

PV-ezRack® SolarRoof™

Code-Compliant Planning and Installation Guide V4.2 Complying with AS/NZS1170.2-2011 AMDT 2-2016

Introduction

1. Introduction

The Clenergy PV-ezRack® SolarRoof™ has been developed as a universal PV-mounting system for roof-mounting on pitched and flat roofs. The use of patented aluminium base rails, Z-Module technology and telescopic mounting technology eliminates custom cutting and enables fast installation.

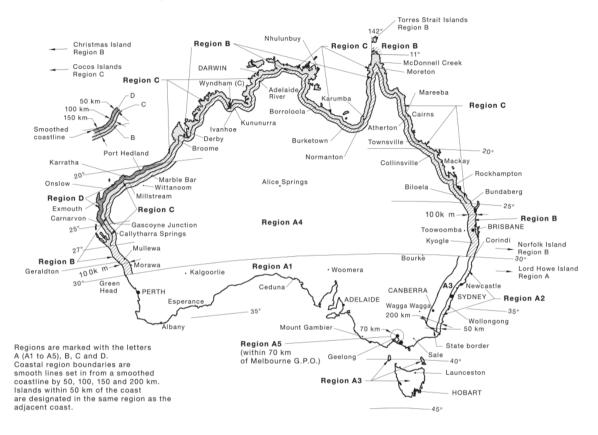
Please review this manual thoroughly before installing PV-ezRack[®] SolarRoof™. This manual provides

- Supporting documentation for building permit applications relating to PV-ezRack[®] SolarRoof™ Universal PV Module Mounting System.
- 2) Planning and installation instructions.

List of Contents Introduction 01 Planning 02 Tools &Component list System Overview 80 Installation Instruction 10 Standard Certification Letter 32 58 Adjustable Tile Brackets Certification Letter Warranty 79

The PV-ezRack® SolarRoof™ parts, when installed in accordance with this guide, will be structurally sound and will meet the AS/NZS1170.2:2011 Amdt 2- 2016 standard. During installation, and especially when working on the roof, please comply with the appropriate Occupational Health and Safety regulations. Please also pay attention to any other relevant State or Federal regulations. Please check that you are using the latest version of the Installation Manual, which you can do by contacting Clenergy Australia via email on sales@clenergy.com.au, or contacting your local distributor in Australia.

The installer is solely responsible for:


- Complying with all applicable local or national building codes, including any updates that may supersede this manual;
- Ensuring that PV-ezRack and other products are appropriate for the particular installation and the installation environment;
- Using only PV-ezRack parts and installersupplied parts as specified by PV-ezRack project plan (substitution of parts may void the warranty and invalidate the letter of certification);
- Recycling: Recycle according to the local relative statute;
- Removal: Reverse installation process;
- Ensuring that there are no less than two professionals working on panel installation;
- Ensuring the installation of related electrical equipment is performed by licenced electricians;
- Ensuring safe installation of all electrical aspects of the PV array, This includes adequate earth bonding of the PV array and PV-ezRack[®] SolarRoof[™] components as required in AS/ NZS 5033-2014 AMDT 2 2-2018:
- Ensuring that the roof, its rafters/purlins, connections, and other structural support members can support the array under building live load conditions;
- Ensuring that screws to fix interfaces have adequate pullout strength and shear capacities as installed:
- Maintaining the waterproof integrity of the roof, including selection of appropriate flashing;
- Verifying the compatibility of the installation considering preventing electrochemical corrosion between dissimilar metals. This may occur between structures and the building and also between structures, fasteners and PV modules, as detailed in AS/NZS 5033: 2014.
- Verifying atmospheric corrosivity zone of installation site by referring to AS 4312-2008 or consulting local construction business to determine appropriate products and installations.

Planning

2. Planning

2.1 Determine the wind region of your installation site

Region Definition:

Wind regions are pre-defined for the whole of Australia by the Australian Standard 1170.2. The Wind Region is an independent factor of surrounding topography or buildings.

- Most of Australia is designated Region A which indicates a Regional Wind Velocity of 43 m/s with wind average recurrence of 200 years.
- Some areas are designated Region B (52 m/s).
 Local authorities will advise if this applies in your area.
- Region C areas (64 m/s) are generally referred to as Cyclonic and are generally limited to northern coastal areas. Most Region C zones end 100km inland.
- Region D (79 m/s) is Australia's most extreme Cyclonic Region, located between the town of Carnarvon and Pardoo Station in Western Australia.

Planning

2.2 Determine the Terrain Category

You will need to determine the terrain category to ensure the installation meets the required standard.

Terrain Category 1 (TC1) – Very exposed open terrain with few or no obstructions and enclosed, limited-sized water surfaces at serviceability and ultimate wind speeds in all wind regions, e.g. flat, treeless, poorly grassed plains; rivers, canals and lakes; and enclosed bays extending less than 10km in the wind direction.

Terrain Category 1.5 (TC1.5) – Open water surfaces subjected to shoaling waves at serviceability and ultimate wind speeds in all wind regions, e.g. near-shore ocean water; larger unenclosed bays on seas and oceans; lakes; and enclosed bays extending greater than 10km in the wind direction. The terrain height multipliers for this terrain category shall be obtained by the linear interpolation between the values for the TC1 and TC2.

Terrain Category 2 (TC2) – Open terrain, including grassland, with well-scattered obstructions having heights generally from 1.5m to 5m, with no more than two obstructions per hectare, e.g. farmland and cleared subdivisions with isolated trees and uncut grass.

Terrain Category 2.5 (TC2.5) – Terrain with a few trees or isolated obstructions. This category is intermediate between TC2 and TC3 and represents the terrain in developing outer urban areas with scattered houses, or larger acreage developments with fewer than ten buildings per hectare. The terrain-height multipliers for this terrain category shall be obtained by linear interpolation between the values for the TC2 and TC3.

Terrain Category 3 (TC3) – Terrain with numerous closely spaced obstructions having heights generally from 3m to 10m. The minimum density of obstructions shall be at least the equivalent of 10 house sized obstructions per hectare, e.g. suburban housing or light industrial estates.

Terrain Category 4 (TC4) – Terrain with numerous larger, high (10m to 30m tall) and closely-spaced buildings, such as large city centers and well-developed industrial complexes.

If your installation site is not at TC 2, 2.5 or 3, please contact Clenergy to obtain a project specific engineering certificate to support your installation.

2.3 Verify Atmospheric Corrosivity Zone of Installation Site

Please refer to "AS 4312-2008 Atmospheric Corrosivity Zones in Australia" or consult local construction business to verify corrosivity category of installation site to determine appropriate products and interface spacing. When standard products are installed in high corrosivity zones, like C4/C5, interface spacing reduction factor need to be applied. Please refer to the generic notes of Certification Letter for the details.

Note: Clenergy provided screws for Tin interfaces are suitable for up to C3 corrosive environments only.

Planning

2.4 Determine the Height of the Installation Site

This document provides sufficient information for the PV-ezRack[®] SolarRoof™ system installation up to heights of 30 meters. If your installation site is more than 30 meters high please contact Clenergy to obtain project specific engineering certificate to support your installation.

2.5 Determine Roof slope

The PV-ezRack[®] SolarRoof[™] system can be used for roof slopes up to 60°. Please verify that the Installation site roof slope is between 0° and 60°.

2.6 Determine the Installation Area of Roof

Please refer to the generic notes 29, 30 and 32 of Certification Letter to determine the installation area based on building height, length and width. Please be aware at certain building conditions there is an Exclusion Zone for flush installation, which is the minimum distance between PV solar panel and roof edge of "2s", where "s" is the gap between the underside of the panel and the roof surface.

2.7 Verify Rafter/Purlin Properties of Building

Please verify rafter/purlin properties of building, which could affect the interface spacing. For example, tin interface spacing on the metal purlin in the certification letter is based on steel purlin G450 1.5 mm thick. If the steel purlin is less than 1.5 mm thick, the corresponding reduction factor of interface spacing will be applied. Please refer generic notes for details.

2.8 Determine the Maximum Rail Support Spacing

Please refer to the Certification Letter and Interface Spacing Table. If a project specific Certification Letter has been provided, please refer to the support spacing in this letter.

2.9 Verify Maximum Rail End Overhang

Rail end overhang should be not over 40% of the interface spacing. For example, if the interface spacing is 1500mm, the Rail end overhang can be up to 600mm only.

2.10 Acquire PV Modules Clamping Zone Information

It is recommended to acquire PV modules clamping zone info. from PV modules manufacturer, which can help to plan interfaces positions on the roof and rails orientation and positions.

Tools and Components

3. Tools and Components

3.1 Tools

Tools

Angle Grinder with Stone Disk

Screw Driver (for M8 Hexagon Socket Screw)

Torque Spanner

Spanner

5m Tape

String & Marker Pen

3.2 Components

Component list

ER-EC-ST End Clamp

ER-IC-ST Inter Clamp

C-U/30/46-G Universal Clamp

C-U/30/46 Universal Clamp

ER-EC-DU35/40 End Clamp, Dual 35 or 40mm

ER-EC-DU40/46 End Clamp, Dual 40 or 46mm

ER-R-ECO ECO Rail

ER-SP-ECO Splice for ECO Rail

SCO-ECO/380 Side Channel Cover for Cutter-Rail, length 380 mm

Tools and Components

Component list

ER-I-41/EZC/ECO Adjustable Tile Interface with ezClick connection, 120 mm horizontal arm

ER-I-61/EZC/ECO Adjustable Tile Interface with ezClick connection, 170 mm horizontal arm

ER-I-01 Tile Interface

ER-I-01/CS Tile Interface, Carbon Steel

ER-I-01/EZC/ECO
Tile Interface with
ezClick connection for
ECO-Rail

ER-I-02 Flat Tile Interface

ER-I-04 Slate Interface

ER-I-23 Tile Interface-Landscape

ER-I-26
Tile Interface-Side mount

ER-I-51
Tile Interface, 118mm
horizontal arm

ER-I-05 Tin Interface

ER-I-05/CM
Tin Interface with Click
Module

ER-I-05A/EZC/ECO Tin Interface A with ezClick connection

ER-I-25 Tin Interface with Curved Base for Corrugated Roof

Tools and Components

Component list

ER-HB-8/150 Hanger Bolt for wood purlin

ER-HB-MP/8/150EP Hanger Bolt for metal purlin

EZ-RE-200 Roof Hook Extender

EZ-AD-C43 Adapter (Puck) for Corrugated Iron Roof

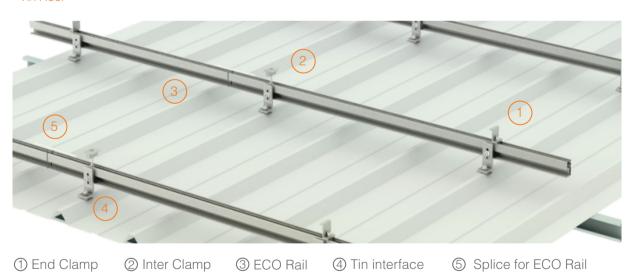
EZ-GC-ST Grounding clip

EZ-GL-ST
PV-ezRack Grounding Lug
with Copper Pipe

IS-SR265/111 Isolator Shade, nonassembly (Mill Finish)

AB-SR/IS/260 Angle Bracket

System Overview


4. System Overview

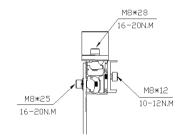
4.1 Overview of PV-ezRack SolarRoof

- Tile Roof

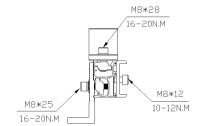
- Tin Roof

System Overview

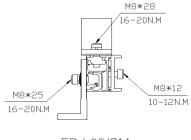
4.2 Precautions during Stainless Steel Fastener Installation

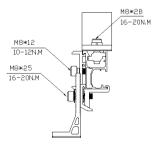

Improper operation may lead to deadlock of Nuts and Bolts. The steps below should be applied to stainless steel nut and bolt assembly to reduce this risk.

4.2.1 General installation instructions:


- (1) Apply force to fasteners in the direction of thread
- (2) Apply force uniformly, to maintain the required torque
- (3) Professional tools and tool belts are recommended
- (4) In some cases, fasteners could be seized over time. As an option, if want to avoid galling or seizing of thread, apply lubricant (grease or 40# engine oil) to fasteners prior to tightening.

4.2.2 Safe Torques

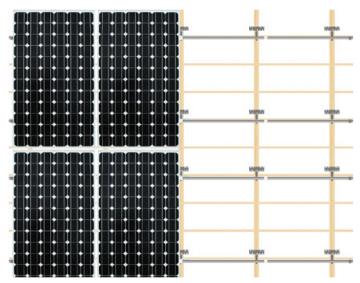

Please refer to safe torques defined in this guide as shown in the figures below. When fixing mid and end clamps, if the torques range specified by the panel manfuacturer is different, it should be used instead. In case power tools are required, Clenergy recommends the use of low speed only. High speed and impact drivers increase the risk of bolt galling (deadlock) If deadlock occurs and you need to cut fasteners, ensure that there is no load on the fastener before you cut it. Avoid damaging the anodized or galvanized surfaces.


ER-I-01 and other tile interfaces

ER-I-05 and ER-I-25

ER-I-05/CM

ER-I-05A/EZC/ECO


4.3 Installation Dimensions

All drawings and dimensions in this Installation Guide are a generic reference only. PV-ezRack[®] SolarRoof™ is to be optimized to suit specific conditions for each project and should be documented in a construction drawing.

Major components of PV-ezRack[®] SolarRoof™ may be provided in section sizes and lengths varying from those shown in this guide. The installation process detailed in this instruction guide remains the same regardless of changes in component size.

If you need to do any on-site modifications or alteration of the system please provide marked up drawings/sketches for Clenergy's review, prior to modification, for comment and approval.

5. Installation Instruction

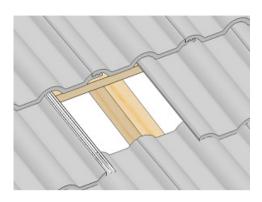
- Assess the number of modules in the vertical direction using the module height plus at least 18mm between modules (please check the installation manual of the solar module manufacturer):
- Assess the Number of modules in the horizontal direction using the module width plus 18 mm (20 mm if using Universal Clamps) between the modules.

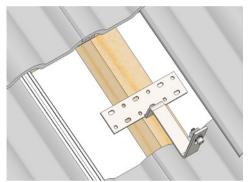
Note: The standard end clamp will also add 20 mm (except for dual end clamps) on each side to the space required;

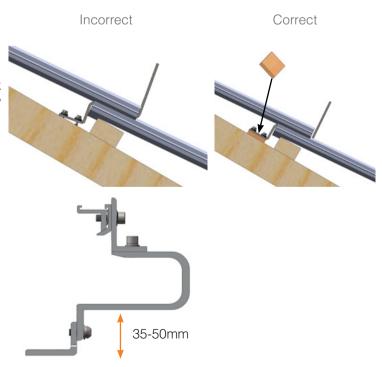
- Assess the horizontal spacing of the Roof Hooks;
- Assess the vertical spacing of the Roof Hooks = approx. 1/2 to 3/4 of module height;
- Always check the installation manual of the PV-Module you use in order to determine the allowed fixing points on the module frame.

5.1 Tile Interface Installation

5.1.1 Determine the positions of the Roof Hooks according to your plans. Remove the roof tiles at the marked positions or, if possible, simply push them up slightly.

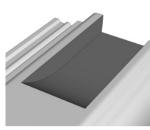

5.1.2 Fix the Roof Hooks to the rafter using Clenergy provided Buildex 14 gauge Hex Head Zips screw with minimum 25 mm embedment as shown in the figure on the right following the Buildex screws installation guide below:

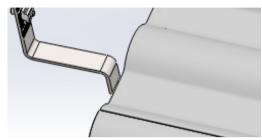

- Use a 3/8" Hex Socket.
- Use a mains powered or cordless screw driver with a drive speed of 3,000 RPM maximum.
- Fit the driver bit into the screw and place at the fastening position.
- Apply consistently firm pressure (end load) to the screw driver until the screw is fastened.


5.1.3 The roof hook must not press against the roof tile. If necessary, pack the roof hook with max pack height of 17 mm for Clenergy provided Buildex 50 mm long screw, with max pack height of 35 mm for Clenergy provided Buildex 65 mm long screw.

Note: When installing Adjustable Tile Interface (ER-I-41/EZC/ECO or ER-I-61/EZC/ECO), height can be adjustable from 35mm to 50mm.

The recommended torque of bolt for height adjustment is 16-20 N·m.





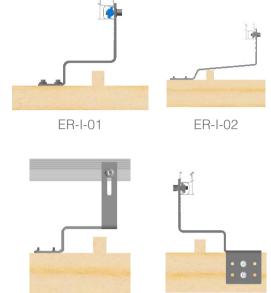
5.1.4 If necessary, use an angle grinder

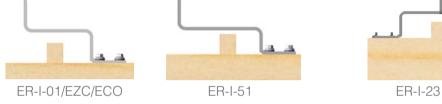
to cut a recess in the tile covering the Roof Hook at the point where the Roof Hook extends so that the tile lies flat on the surface. If grooved tiles are used, it will also be necessary to cut a recess in the lower tile.

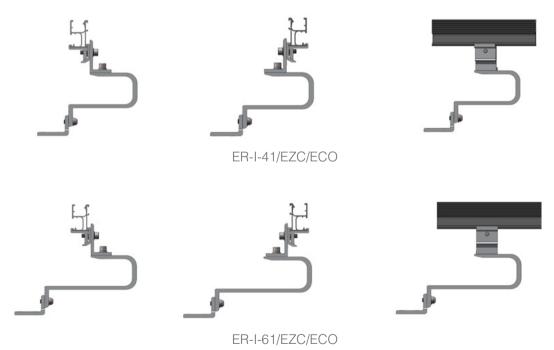
5.1.5 Caution! Do not use fitted roof hooks as a ladder, as this extreme point load could damage the tile below.

5.1.6 Variation for installation on plain tile roofs with plain tile roof cladding: A recess must be cut into the tiles around the position of the roof hook. The tile flashing should be used if necessary to prevent ingress of water.

5.2 Rail Installation


5.2.1 To connect several rails together, slide half of the splice into the rear side of the rail. Fasten the first M8 Bolt using an Allen key, and slide the next rail into the splice. Tighten the second M8 Bolt using an Allen key. The total rail length is recommended not to be over 30 meters considering rails thermal expansion problem. Splice provides the electrical connection between the 2 rails through the pressure bolts. This eliminates the need of using 2 earthing lugs Recommended torque is 10 ~12 Nm.



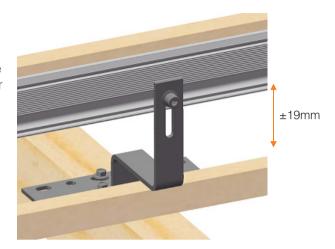

ER-I-26

5.2.2 If the rails consist of different lengths, always begin with the shortest piece. Install the PV modules on the Roof Hooks and fasten loosely with M8 x 25 bolt and washers as shown in the figure on the right. Two to three screw turns are adequate for loose installation.

5.2.3 Adjustable Tile Interface (ER-I-41/EZC/ECO or ER-I-61/EZC/ECO) can adjust L profile bracket on the top to achieve rail running parallel or perpendicular to the rafter. See the figures below.

Notes:

- 1. For ER-I-41/EZC/ECO adjustable tile interface, interface spacings at 3 different scenarios above are different;
- 2. There is an adjustable tile interface specific engineering letter (at the end of this installation guide) for both ER-I-41/EZC/ECO and ER-I-61/EZC/ECO.


Installation Guide_PV-ezRack SolarRoof (October 2020)

page 13 of 80

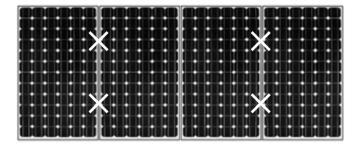
5.2.4 Adjust the vertical and horizontal positioning using the long hole in the Roof Hook and the loosely connected Z Module in the rail, as shown in the figure on the right. The roof hook should not protrude over the rail after the adjustment.

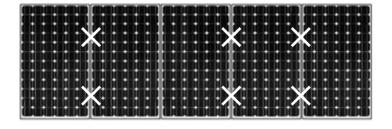
The recommended torque is 16~20N·m.

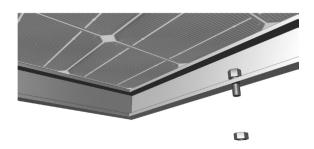
5.3 PV Module Installation

5.3.1 Deployment of Grounding Clips
1) When there is an even number of PV Module in each row:

Install the grounding clips at the positions marked X in the figure shown. Then the number of Grounding Clips = number of PV Module. Eq; 4 grounding clips in the figure shown.

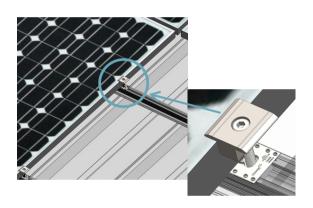

2) When there is an odd number of PV Module in each row:

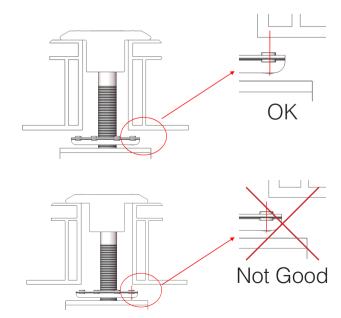

Install grounding clips at positions marked X in figure shown.


Then the number of Grounding Clips = number of PV Module +1. Eg; 6 grounding clips in figure shown.

Important Notes:

- When replacing defective PV Modules, it is required to replace the grounding clips under the defective PV Modules.
- When removing defective PV Modules, it is required to keep sufficient grounding clips to maintain all other PV modules' earthing continuity with the rail. It is required to install grounding clips under end clamps when necessary to achieve this.
- 5.3.2 Before installing the PV modules on horizontal rail installations, add anti-slip protection to the lowest row of PV modules. To do this, fasten M6 x 20 mm bolts (with the shank downwards) to the lower mounting holes of the PV module frame. When installing large modules (e.g. ASE250) M8 x 20 mm bolts must be used.


5.3.3 Place the PV Modules on to the rails and fix with End Clamps, Inter Clamps or Universal Clamps. Fasten with the Allen key. Please use Solution 1 or 2 below according to your project.

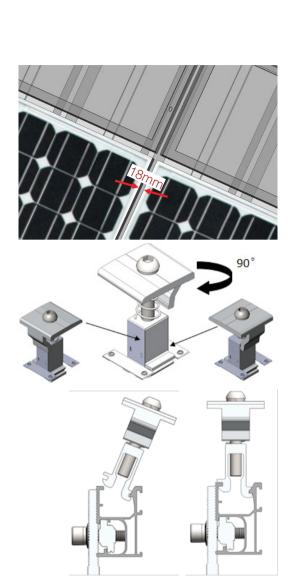

- -Solution 1 (Apply Standard Clamps)
- -Step 1 Place the first PV Module on the Rail according to your plan, and fix it in place using the End Clamps. Then fasten lightly with the Allen Key as shown in the figure on the right.
- -Step 2 Slightly lift the PV Module and slide Inter Clamps and Grounding Clips into position. The teeth on Grounding Clip will automatically align when the Inter Clamp is properly installed as shown in the figure on the right.
- -Step 3 loosely place the next framed PV Module into the other side of the Inter Clamp and Grounding Clip as shown in the figure on the right.

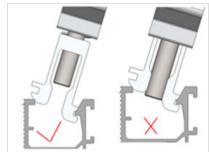
Important Notes:

-To fix the Grounding Clip properly, ensure the frames of PV Modules are completely pressed against the Inter Clamps and Grounding Clips. Visually check that Grounding Clips are positioned properly.

-Grounding Clips are intended for SINGLE USE ONLY! Only fasten the bolts down when the position of the PV Module is finalized. (Only slightly tighten bolts to keep PV Modules in place prior to the final check)

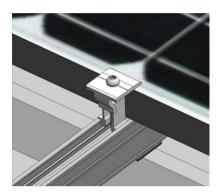
-Solution 2 (Apply Universal Clamps)

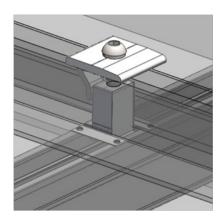

Step 1 Twisting the head of the Universal Clamp changes the functionality from End to Inter Clamp as shown in the figure on the right.

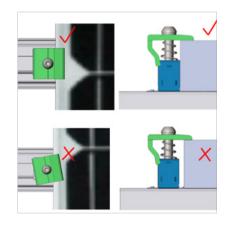

NOTE: Please ensure the Universal Clamp C-U/30/46 or Universal Clamp with Grounding Clip C-U/30/46-G is positioned correctly according to 5.3.1: Deployment of Grounding Clip.

Step 2 Incline the Universal Clamp to fit the lower channel against the lower channel of the Rail, and press the Universal Clamp down towards the other side to securely fit the upper channel against the upper rail channel, as shown in the figure on the righ

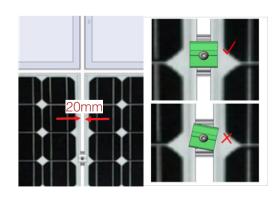
Note: Before installation, make sure there is enough clearance between the screw and lower module of Universal Clamp as shown in the figure on the right.


Step 3 Place the first PV Module on the Rails and apply the Universal Clamp in the End Clamp position and fasten slightly with the Allen Key. Make sure the frame of the PV Module is fully in contact with the Universal Clamp as shown in the figure on the right. Visually check the Universal Clamp and PV module are properly installed.





Step 4 When using as an Inter Clamp, click the Universal Clamp into the rail channel and slightly lift the framed PV Module to ensure the Grounding Clip is fully covered as shown in the figure on the right.


Step 5 Loosely place the next framed PV Module into the other side of the Universal Clamp. Ensure the Grounding Clip is fully covered and ensure the frame of the PV Module is in close contact with Universal Clamp as shown in the figure on the right.

Step 6 Repeat steps above to install all PV Modules. Visually check the Universal Clamps and PV modules are properly positioned and then fasten all Clamps.

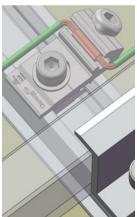
When you using Universal Clamps, the gap between two adjacent PV Modules is 20mm. The recommend torque for Universal Clamps in the End Clamp position is 13~14N·m.

The recommend torque for Universal Clamps in the Inter Clamp position is $16\sim20N\cdot m$.

5.3.4 Apply one pre-assembled Grounding Lug per Rail. Slide the Grounding Lug into to the rail channel and fasten the bolt M8*25 with 16~20 N·m. Strip earthing cable (the maximum size is 10 mm²) and insert the conductor into the provided copper tube. Place the copper tube into the channel of Grounding Lug and tighten M6*10 with 5~6 N·m to ensure the earthing cable is tight.

Note: Check the electrical resistance between rail and earthing cable conductor to ensure the bonding is made.

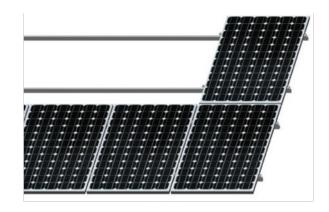
There are three solutions for Grounding Lug installation:


-Solution 1

Fix the Grounding Lug into the top channel of Rail as shown in the figure on the right.

-Solution 2

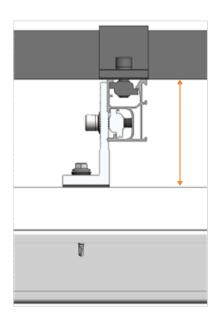
Fix the Grounding Lug into the top channel of Rail where just under the PV Module as shown in the figure on the right.


-Solution 3

Fix the Grounding Lug at the side channel of Rail as shown in the figure on the right.

5.3.5 Slide the first PV module of the second row onto the corresponding module of the first row. Separation from the lower PV module can be maintained for aesthetic reasons. An Inter Clamp can be used as a separator, so that the vertical and horizontal separation of the PV modules is identical. Continue mounting the modules as described in steps 5.3.1 to 5.3.6 until all PV modules are installed.

5.4 Tin Interface Installation


5.4.1 For installations using ER-I-05, Tin Interface equipped with Buildex 14-11 x 70 (14 gauge, 6.3 mm, 11 TPI, 70 mm long) Hex Head Zips screw. Fix the ER-I-05 at the planned locations on metal or wood purlins as shown in the figure on the right following the Buildex screws installation guide below:

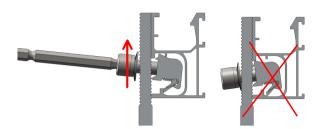
- Use a 3/8" Hex Socket.
- Use a mains powered or cordless screw driver with a drive speed of 3,000 RPM maximum.
- Fit the driver bit into the screw and place at the fastening position.
- Apply consistently firm pressure (end load) to the screw driver until the screw is fastened.

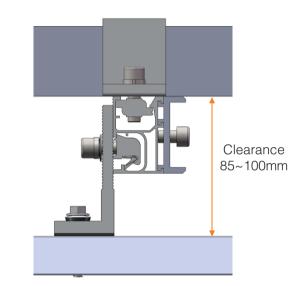
Repeat 5.2 and 5.3 to install the Rails and PV Modules.

Note:

- The purlin thickness should be no less than 0.75mm and no more than 2.4mm;
- Please refer to the recommended torques in 4.2.3 Safe Torques;
- Screws not exposed to frequent rain should be washed down with fresh water at least every 6 months to meet the warranty conditions of Buildex screws.

Clearance 85~100mm

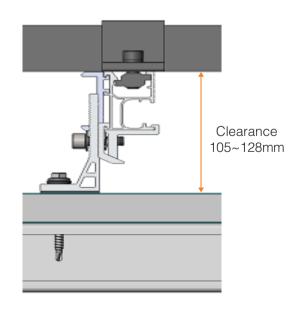

5.4.2 For installations using ER-I-05/CM, Tin Interface with Click Module, equipped with Buildex 14-11 x 70 (14 gauge, 6.3 mm, 11 TPI, 70 mm long) Hex Head Zips screw. Fix the ER-I-05/CM at the planned locations on metal or wood purlins as shown in the figure on the right following the Buildex screws installation guide above.


Repeat 5.2 and 5.3 to install the Rails and PV Modules.

When fastening ER-I-05/CM with rail, it needs to lift up the bolt of click module to make click module well touch with upper rib of side channel of rail. So, the click module can be fixed into the rail properly as shown in the figure on the right.

Note:

- The purlin thickness should be no less than 0.75mm and no more than 2.4mm;
- Please refer to the recommended torques in 4.2.3 Safe Torques;
- Screws not exposed to frequent rain should be washed down with fresh water at least every 6 months to meet the warranty conditions of Buildex screws.



5.4.3 For installations using ER-I-05A/EZC/ECO, Tin Interface with ezClick connection with Buildex 14-11 x 70 (14 gauge, 6.3 mm, 11 TPI, 70 mm long) Hex Head Zips screw. Fix the ER-I-05A/EZC/ECO at the planned locations on metal or wood purlins as shown in the figure on the right following the Buildex screws installation guide above.

Repeat 5.2 and 5.3 to install Rails and PV Modules.

Note:

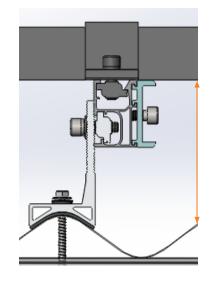
- The purlin thickness should be no less than 0.75mm and no more than 2.4mm;
- Please refer to the recommended torques in 4.2.3 Safe Torques;
- Screws not exposed to frequent rain should be washed down with fresh water at least every 6 months to meet the warranty conditions of Buildex screws.

5.4.4 For installations using ER-I-25, Tin Interface with Curved Base for Corrugated Roof with Buildex 14-11 x 70 (14 gauge, 6.3 mm, 11 TPI, 70 mm long) Hex Head Zips screw. Fix the ER-I-25 at the planned locations on metal or wood purlins as shown in the figure on the right following the Buildex screws installation guide above. Repeat 5.2 and 5.3 to install Rails and PV Modules.

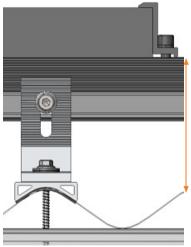
Note:

- The purlin thickness should be no less than 0.75mm and no more than 2.4mm;
- Please refer to the recommended torques in 4.2.3 Safe Torques;
- Screws not exposed to frequent rain should be washed down with fresh water at least every 6 months to meet the warranty conditions of Buildex screws

5.4.5 For installations using EZ-AD-C43 and ER-I-05, Adapter (Puck) for Corrugated Iron Roof and Tin Interface. Attach the EZ-AD-C43 on the planned position and then fix the ER-I-05 on metal or wood purlins as shown in the figure on the right following the Buildex screws installation guide above.

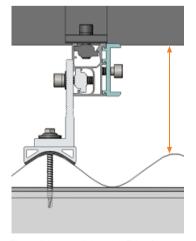

Repeat 5.2 and 5.3 to install Rails and PV Modules. Note: The purlin thickness should be no less than 0.75mm and no more than 2.4mm.

Note:


- The purlin thickness should be no less than 0.75mm and no more than 2.4mm;
- Please refer to the recommended torques in 4.2.3 Safe Torques;
- Screws not exposed to frequent rain should be washed down with fresh water at least every 6 months to meet the warranty conditions of Buildex screws.

NOTE:

WHEN USING TIN INTERFACES FOR INSTALLATION WORKS, SCREWS NOT EXPOSED TO FREQUENT RAIN SHOULD BE WASHED DOWN WITH FRESH WATER AT LEAST EVERY 6 MONTHS TO MEET THE WARRANTY CONDITIONS OF BUILDEX SCREWS.



Clearance 89~104mm

Clearance 89~104mm

The rail is perpendicular to the Rib of metal sheet roof

The rail is parallel to the Rib of metal sheet roof

Clearance 89~104mm

Installation Guide_PV-ezRack SolarRoof (October 2020)

page 21 of 80

5.5 Side Channel Cover for Cutter-Rail Installation (optional)

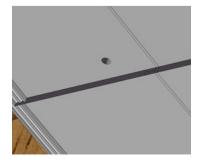
After cables going into the side channel of Cutter-Rail, click covers into side channel of Cutter-Rail at the required places shown in Figures at the right side.

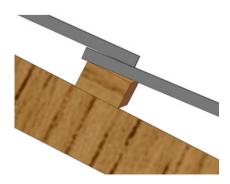
Notes:

- 1. Side channel cover is made of mill finish aluminium, which is only compatible with Cutter rail;
- 2. The main purpose of side channel cover is to cover the cables running through side channel of Cutter rail. To achieve the cable management purpose is also to require ezclick tile or tin interfaces only as they can leave side channel full open and not cause any obstruction or damage to the cables;
- 3. If requires the position adjustment, it is recommended to slide it on the channel rather than uninstallation and reinstallation, which could deform it due to very thin thickness.

5.6 Hanger Bolt Installation

5.6.1 Hanger Bolt for Tile Roof Installation


Hanger bolt (ER-HB-8/150) installation on tile roof is only applicable for tile having some part of flat surface, where the rubber seal of hanger bot can mount flush on the tile not to cause waterproof problem. Please note it is installer's responsibility to verify feasibility of tile brackets penetration and to ensure tiles are not cracked and damaged in hanger bolt installation.


- 5.6.1.1 Purlins are to be identified when opening tiles and their positions are marked out on the tiles.
- 5.6.1.2 Based on installation plan and Hanger bolt spacing info., hanger bolt locations are marked on the tiles.

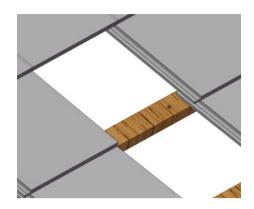
Note: Please find tin interface spacing in the certification letter for hanger bolt spacing.

5.6.1.3 Drill 10 mm hole on the marked location of tile and stop when reaching the purlins.

Note: For some installations, it needs to drill through two tiles (overlap) to reach the purlin;

Installation Guide_PV-ezRack SolarRoof (October 2020)

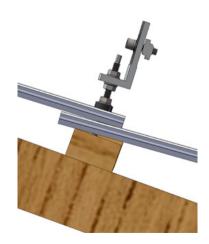
page 22 of 80


5.6.1.4 Through 10 mm hole on the tiles, pre-drill 6 mm hole on the wood purlin for hanger bolt. The tiles are not removed when drilling this hole. After the drilling, clean the dust around 10 mm hole.

5.6.1.5 Adjust the position of rubber seal on the hanger bolt (ER-HB-8/150) to ensure hanger bolt have minimum 25 mm penetration depth into the wood purlin.

Drive the hanger bolt on the wood purlin till the rubber seal is firmly flush on the tile and turn the nut down till touching the rubber seal. Please turn another 4 threads cycle to press the rubber seal.

Note:


- 1) Purlin thickness and tile thickness need to be verified to decide position of rubber seal for appropriate penetration depth;
- 2) It is recommended to apply Sikaflex on the area around 10 mm hole of the tile before fixing hanger bolt. Please refer Sikaflex instructions for use.

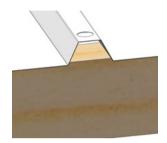
5.6.1.6 Screw out the top nut of hanger bolt, connect and adjust tin foot position and tighten the top nut with the recommended torque of $16\sim20$ N·m.

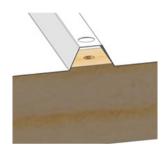
Follow sections 5.2 and 5.3 to install the Rails and PV Modules.

5.6.2 Hanger Bolt for Tin Roof Installation

5.5.2.1 Hanger Bolt for wood purlin Installation Hanger bolt (ER-HB-8/150) installation on tin roof is recommended for trapezoidal profile of roof or similar one having flat surface on the rib.

Drill 11 mm hole on the marked location of roof sheet according to installation plan.

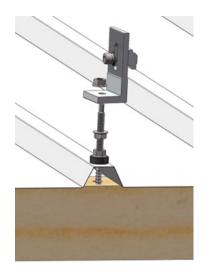

Through 11 mm hole on the roof sheet, pre-drill 6 mm hole on the wood purlin for hanger bolt.

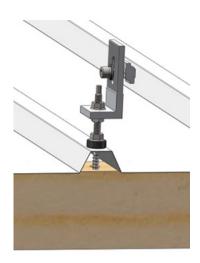

Adjust the position of rubber seal on the hanger bolt (ER-HB-8/150) to ensure hanger bolt have minimum 25 mm penetration depth into the wood purlin.

Drive the hanger bolt on the wood purlin till the rubber seal is firmly flush on the tin roof sheet and turn the nut down till touching the rubber seal. Please turn another 4 threads cycle to press the rubber seal.

Note:

- 1) Penetration depth into the wood purlin is used to decide position of rubber seal;
- 2) It is recommended to apply Sikaflex on the area around 11 mm hole of tin roof before fixing hanger bolt. Please refer Sikaflex instructions for use.
- 3) The roof sheet should not have visible deformation after hanger bolt installation.





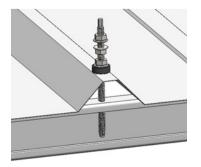
Screw out the top nut of hanger bolt, connect and adjust tin foot position and tighten the top nut with the recommended torque of 16~20 N·m

Follow sections 5.2 and 5.3 to install the Rails and PV Modules.

5.6.2.2 Hanger Bolt for metal purlin Installation

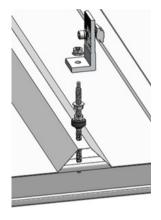
Hanger bolt (ER-HB-MP/8/150EP) installation on tin roof is recommended for trapezoidal profile of roof or similar one having flat surface on the rib.

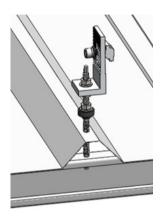
Drill 11 mm hole on the marked location of roof sheet according to installation plan.


Through 11 mm hole on the roof sheet, pre-drill 6 mm hole on the metal purlin for hanger bolt.

Drive the hanger bolt (ER-HB-MP/8/150EP) on the metal purlin till the rubber seal is firmly flush on the tin roof sheet and turn the nut down till touching the rubber seal. Please turn another 4 threads cycle to press the rubber seal.

Note:


- 1) It is recommended to apply Sikaflex on the area around 11 mm hole of tin roof before fixing hanger bolt. Please refer Sikaflex instructions for use.
- 2) The roof sheet should not have visible deformation after hanger bolt installation.



Screw out the top nut of hanger bolt, connect and adjust tin foot position and tighten the top nut with the recommended torque of 16~20 N·m.

Follow sections 5.2 and 5.3 to install the Rails and PV Modules.

5.7 Roof Hook Extender Installation

5.7.1 Roof Hook Extender with Tile Interface Installation

Install the roof hook extender with Tile Interface as shown in the figures on the right.

Either use circular hole or elongated hole of roof hook extender to connect with Tile Interface is allowed.

Recommended torque of M8 bolt is 16~20N·m

Follow sections 5.2 and 5.3 to install the Rails and PV Modules.

Tile Interface connection with circular hole

Tile Interface connection with elongated hole

5.7.2 Roof Hook Extender with Tin Interface Installation

Install the Roof hook Extender with L feet as shown in the figure on the right.

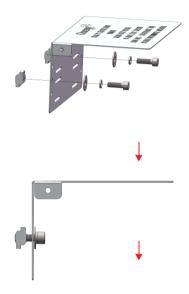
Either use circular hole or elongated hole of roof hook extender to connect with Tin Interface is allowed.

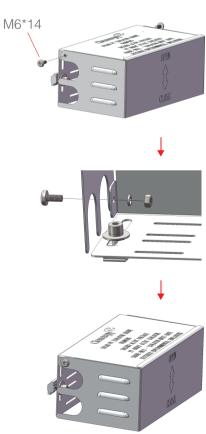
Recommended torque of M8 bolt is 16~20N·m

Follow sections 5.2 and 5.3 to install the Rails and PV Modules.

Tin Interface connection with circular hole

Tin Interface connection with elongated hole

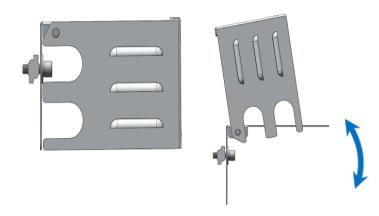

5.8 Accessory Installation


5.8.1 Isolator Shade InstallationTo be Fixed along the Rail

Assemble the Isolator Shade step by step as shown in the figure on the right.

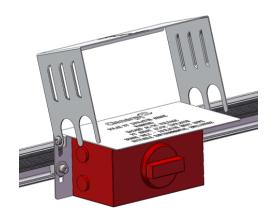
Recommended torque for M6 bolts is 4-5N·m, which allows for optimal opening and closing of the isolator cover.

Note: When using Isolator Shade (black anodized), please apply External Teeth Lock Washers between Plain washer for earthing continuity.



According to your plan, mark out the position for Isolator Shade installation on the Rail.

Note: Allow space above the Rail for the Isolator Shade Cover to open fully

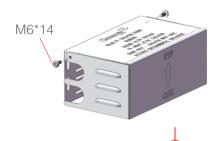


Rotate up the Cover and fix the Isolator to the Isolator Shade according to the Isolator Installation Guide

Once the Isolator is fixed properly, position the Z Module in the Rail channel and fix the Isolator Shade with the bolts supplied.

Recommended torque for M8 bolts is 4-5 $\ensuremath{\text{N}}\xspace{-1.5}\text{m}$.

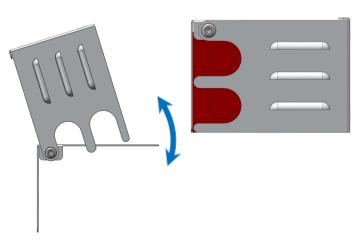
After cable installation, close the Isolator Cover as shown in the figure on the right.


- To be Fixed Rail End (Optional)

An alternative option for fixing the Isolator Shade is at the end of the rail using the Angle Bracket as below,

Assemble the Isolator Shade step by step as shown in the Figure on the right.

Recommended torque for M6 bolts is 4-5N·m, which allows for optimal opening and closing of the isolator cover.

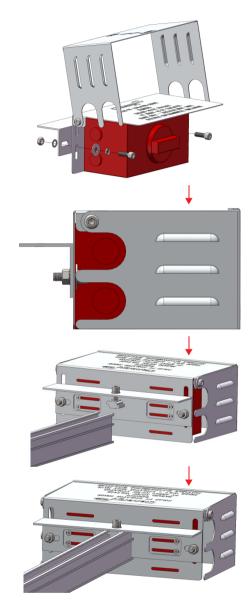

Note: When using Isolator Shade (black anodized), please apply External Teeth Lock Washers between Plain washer for earthing continuity.

Rotate up the Cover and fix the Isolator to the Isolator Shade according to the Isolator Installation Guide in the Figure on the right.

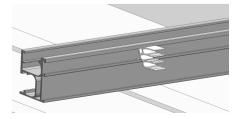
Installation Guide_PV-ezRack SolarRoof (October 2020)

Fix the Angle Bracket to the Isolator Shade and then fix the assembled Isolator Shade on the Rail as shown in the Figure on the right.

Note: Allow space above the Rail for the Isolator Shade Cover to open fully.


Recommended torque for M8 Bolts for fixing Angle Bracket on Isolator Shade is 8-10N·m.

Recommended torque for M8 Bolt for fixing Isolator Shade on the Rail is 16-20N·m.


After cable installation, close the Isolator Cover as shown in the Figure on the right.

5.8.2 Cable Clip Installation

- Click the top end of the Cable Clip into the channel on the back of the rail.
- Push the other end of the clip in to the rail channel, using a rubber mallet if required.

Installation Guide_PV-ezRack SolarRoof (October 2020)

Standard Certification Letter

CIVIL & STRUCTURAL ENGINEERS

RESIDENTIAL - INDUSTRIAL - COMMERCIAL - PRODUCT DEVELOPMENT

info@mwengineering.melbourne
Phone: 1300 MWENG-0 (1300 69364-0)
www.mwengineering.melbourne
ABN 37 605 815 585

20 October 2020

Clenergy Australia 1/10 Duerdin Street Clayton, VIC 3168

CERTIFICATION LETTER

Clenergy PV-ezRack Solar Roof Certification – TC2, 2.5, 3 – Wind Region A, B, C, D. Internal REF: **00115.** Project REF: **CL-10088-SM-REV-H.**

MW Engineering Melbourne, being Structural Engineers within the meaning of Australian regulations, have calculated the maximum spacings for the PV ez-Rack rail system for the following conditions:

- Wind Loads to AS 1170.2-2011 AMDT 4-2016
 - Wind Terrain Category 2, 2.5 and 3
 - Wind average recurrence of 200 years
 - Wind Region A, B, C, D
- Solar panel length up to 2.2m
- Solar panel width up to 1.2m

Attached are the tables showing the spacings according to Wind Region, roof pitch, and building height.

The values shown on these tables will be valid unless an amendment is issued on any of the following codes:

AS/NZS 1170.0- 2002 AMDT 4-2016
 AS/NZS 1170.1- 2002 AMDT 4-2016
 AS/NZS 1170.2- 2011 AMDT 4-2016
 AS/NZS 1664.1- 1997 AMDT 1:1999
 AS/NZS 1664.1- 1997 AMDT 1:1999

Should you have any queries, do not hesitate to contact us.

Best Regards,

Alberto Escobar Civil/Structural Engineer BEng MIEAust NER BRP EC 46542

RPEQ 18759

info@mwengineering.melbourne

STRUCTURAL DESIGN CERTIFICATION

PV-ezRack^R SolarRoof tin and tile flush interface spacing tables according to AS/NZS 1170.2:2011 Amdt 4-2016 Within Australia Terrain Category 2, 2.5 & 3

Client: Clenergy Australia

REF: CL-10088-SM - REV H

Date: OCT 2020

Copyright: The concepts and information contained in this document are the property of MW Engineering Melbourne. Use or copying of this document in whole or in part without the written permission of MW Engineering Melbourne constitutes an infringement in copyright.

Limitation: This report has been prepared for the exclusive use of Clenergy Australia, and is subject to and issued in connection with the provisions of the agreement between MW Engineering Melbourne and Clenergy Australia. MW Engineering Melbourne accepts no liability or responsibility whatsoever for any use of or reliance upon this report by any third party other than Clenergy's clients.

Internal REF: 00115

Client: Clenergy Australia

Project: PV-ezRack SolarRoof tin and tile flush interface spacing tables

Australian Standards

AS/NZS 1170.0:2002 (R2016) General Principles
AS/NZS 1170.1:2002 (R2016) Imposed loadings
AS/NZS 1170.2:2011 (R2016) Wind Loadings
AS/NZS 1664.1:1997-Amdt 1:1999
Aluminium

Wind Terrain Category: 2, 2.5 & 3

Wind average recurrence: 200 years

Designed: SM

Date: OCT 2020

Disclaimer: From the date of publication onwards, any amendment made to any of the above-mentioned Standards will make this report outdated and a new one will have to be released, unless the amendment has no implications on this certificate.

Contents

ER-I-01 - T.C 2	4
ER-I-01 - T.C 2.5	
ER-I-01 - T.C 3	8
ER-I-05 - T.C 2	10
ER-I-05 - T.C 2.5	12
ER-I-05 - T.C 3	14
General Notes	16
Standard screws shipped for tin and tile roof interfaces	16
Tin and tile reduction factors table for 0.75 mm thick steel battens and 1.2mm thick purlins	16
Tin increase factors table for 1.9 mm and 2.4 mm thick purlins	16
Timber batten embedment reduction factors table	16
Components table	17
Panel size reduction/increasing factors table	20
Tile interface reduction factors table	21

Type of Rail ER-R-ECO (Refer to Note 7 for other compatible rails)

Type of Interface ER-I-01 (Tile Interface)

Solar Panel Dimension 2 m x 1 m (Refer to Note 13 for other panel sizes)

Terrain Category 2

Roof Angle - $0^{\circ} < \alpha \le 10^{\circ}$

					Building Height (m)						
\A/: I	H <u><</u> 5		5 < H <u><</u> 10		10 < H ≤ 15		15 < H ≤ 20		20 < H <u><</u> 30		
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	
Α	1488	1637	1444	1588	1369	1506	1354	1490	1310	1441	
В	1086	1195	997	1097	893	982	819	900	700	769	
С	692	761	647	712	566	622	513	565	454	499	
D	417	458	402	442	365	401	327	360	290	319	

Roof Angle - $10^{\circ} < \alpha \le 20^{\circ}$

					B uilding H	Building Height (m)							
Wind	H <u><</u> 5		5 < H < 10		10 < H ≤ 15		15 < H ≤ 20		20 < H <u><</u> 30				
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central			
Α	1459	1604	1415	1556	1342	1476	1327	1460	1284	1412			
В	1065	1171	977	1075	875	963	802	882	686	754			
С	678	746	634	698	554	610	503	554	445	489			
D	408	449	394	433	357	393	321	353	284	313			

					Building Height (m)							
Wind	H <u><</u> 5		5 < H < 10		10 < H ≤ 15		15 < H ≤ 20		20 < H <u><</u> 30			
Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central		
Α	1444	1588	1400	1540	1328	1461	1314	1445	1270	1397		
В	1054	1159	967	1064	866	953	794	873	679	746		
С	671	738	628	691	549	603	498	548	440	484		
D	404	445	390	429	354	389	318	349	282	310		

Type of Rail ER-R-ECO (Refer to Note 7 for other compatible rails)

Type of Interface ER-I-01 (Tile Interface)

Solar Panel Dimension 2 m x 1 m (Refer to Note 13 for other panel sizes)

Terrain Category 2

	Building Height (m)									
Wind	H <u><</u> 5		5 < H ≤ 10		10 < H ≤ 15		15 < H ≤ 20		20 < H <u><</u> 30	
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	1414	1555	1371	1509	1301	1431	1287	1415	1244	1369
В	1032	1135	947	1042	848	933	778	855	665	731
С	657	723	615	677	537	591	488	537	431	474
D	396	435	382	420	346	381	311	342	276	303

Type of Rail ER-R-ECO (Refer to Note 7 for other compatible rails)

Type of Interface ER-I-01 (Tile Interface)

Solar Panel Dimension 2 m x 1 m (Refer to Note 13 for other panel sizes)

Terrain Category 2.5

Roof Angle - $0^{\circ} < \alpha \le 10^{\circ}$

					Building Height (m)						
\A(!)	H <u><</u> 5		5 < H ≤ 10		10 < H ≤ 15		15 < H ≤ 20		20 < H <u><</u> 30		
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	
Α	1560	1717	1514	1665	1436	1579	1420	1562	1373	1511	
В	1139	1253	1046	1150	936	1030	858	944	733	807	
С	726	798	679	747	593	652	538	592	476	524	
D	437	481	421	463	382	421	343	378	304	335	

Roof Angle - $10^{\circ} < \alpha \le 20^{\circ}$

	Building Height (m)												
\A.(: 1	H <u><</u> 5		5 < H ≤ 10		10 < H ≤ 15		15 < H ≤ 20		20 < H <u><</u> 30				
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central			
Α	1529	1682	1483	1632	1407	1548	1392	1531	1346	1480			
В	1116	1228	1025	1127	918	1009	841	925	719	791			
С	711	782	665	732	581	639	528	580	466	513			
D	428	471	413	454	375	412	336	370	298	328			

	Building Height (m)												
Wind	H <u><</u> 5		5 < H ≤ 10		10 < H ≤ 15		15 < H ≤ 20		20 < H ≤ 30				
Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central			
Α	1514	1665	1468	1615	1393	1532	1377	1515	1332	1465			
В	1105	1215	1014	1116	908	999	833	916	711	783			
С	704	774	658	724	575	633	522	574	462	508			
D	424	466	409	450	371	408	333	366	295	325			

Type of Rail ER-R-ECO (Refer to Note 7 for other compatible rails)

Type of Interface ER-I-01 (Tile Interface)

Solar Panel Dimension 2 m x 1 m (Refer to Note 13 for other panel sizes)

Terrain Category 2.5

	Building Height (m)										
Wind	H <u><</u> 5		5 < H <u><</u> 10		10 < H ≤ 15		15 < H ≤ 20		20 < H ≤ 30		
Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	
Α	1482	1631	1438	1582	1364	1500	1349	1484	1305	1435	
В	1082	1190	993	1093	889	978	815	897	697	766	
С	689	758	645	709	563	620	511	563	452	497	
D	415	457	400	440	363	400	326	359	289	318	

Type of Rail ER-R-ECO (Refer to Note 7 for other compatible rails)

Type of Interface ER-I-01 (Tile Interface)

Solar Panel Dimension 2 m x 1 m (Refer to Note 13 for other panel sizes)

Terrain Category 3

Roof Angle - $0^{\circ} < \alpha \le 10^{\circ}$

	Building Height (m)									
Wind	H <u><</u> 5		5 < H <u><</u> 10		10 < H ≤ 15		15 < H ≤ 20		20 < H <u><</u> 30	
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	1665	1832	1615	1777	1532	1685	1515	1667	1465	1612
В	1216	1337	1116	1227	999	1099	916	1008	783	861
С	774	852	724	797	633	696	575	632	508	559
D	466	513	450	495	408	449	366	403	325	357

Roof Angle - $10^{\circ} < \alpha \le 20^{\circ}$

	Building Height (m)									
Wind	H <u><</u> 5		5 < H < 10		10 < H ≤ 15		15 < H ≤ 20		20 < H <u><</u> 30	
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	1632	1795	1583	1741	1501	1652	1485	1634	1436	1580
В	1191	1311	1093	1203	979	1077	898	987	767	844
С	759	835	710	781	620	682	563	619	498	548
D	457	503	441	485	400	440	359	395	318	350

	Building Height (m)									
\A/: I	H <u><</u> 5		5 < H < 10		10 < H ≤ 15		15 < H ≤ 20		20 < H ≤ 30	
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	1615	1777	1567	1724	1486	1635	1470	1617	1422	1564
В	1179	1297	1082	1191	969	1066	888	977	759	835
С	751	826	703	773	614	675	557	613	493	542
D	452	498	436	480	396	435	355	391	315	346

Type of Rail ER-R-ECO (Refer to Note 7 for other compatible rails)

Type of Interface ER-I-01 (Tile Interface)

Solar Panel Dimension 2 m x 1 m (Refer to Note 13 for other panel sizes)

Terrain Category 3

					B uilding H	leight (m)				
\A(!)	H :	≤ 5	5 < H	<u>≤</u> 10	10 < H	1 <u><</u> 15	15 < F	- 1 ≤ 20	20 < H	l <u>≤</u> 30
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	1582	1740	1535	1688	1455	1601	1440	1584	1392	1531
В	1155	1270	1060	1166	949	1044	870	957	744	818
С	736	809	688	757	601	661	546	600	483	531
D	443	487	427	470	388	426	348	383	308	339

Type of Rail ER-R-ECO (Refer to Note 7 for other compatible rails)

Type of Interface ER-I-05 (Tin Interface)

Solar Panel Dimension 2 m x 1 m (Refer to Note 13 for other panel sizes)

Terrain Category 2

Roof Angle - $0^{\circ} < \alpha \le 10^{\circ}$

					Building H	leight (m)					
\A/: I	H <u><</u> 5		5 < H ≤ 10		10 < H <u><</u> 15		15 < H ≤ 20		20 < H <u><</u> 30		
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	
Α	1579	1737	1496	1646	1469	1616	1432	1575	1377	1515	
В	1368	1505	1157	1272	1047	1151	964	1060	900	990	
С	890	980	734	808	670	737	624	687	588	646	
D	542	596	506	556	431	475	395	434	367	404	

Roof Angle - $10^{\circ} < \alpha \le 20^{\circ}$

					B uilding H	leight (m)				
\A/: I	H	≤ 5	5 < H	<u><</u> 10	10 < H	H <u><</u> 15	15 < F	H <u><</u> 20	20 < F	H <u>≤</u> 30
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	1574	1732	1492	1641	1460	1606	1423	1565	1372	1510
В	1359	1495	1157	1272	1042	1146	955	1050	895	985
С	881	969	730	803	661	727	620	682	583	641
D	532	586	464	510	422	465	386	424	358	394

					B uilding H	leight (m)				
\A/: I	H	≤ 5	5 < H	<u>≤</u> 10	10 < H	H <u><</u> 15	15 < F	< H ≤ 20 20 <		H <u>≤</u> 30
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	1570	1727	1487	1636	1460	1606	1418	1560	1368	1505
В	1359	1495	1148	1262	1037	1141	950	1045	890	980
С	877	964	725	798	661	727	620	682	583	641
D	532	586	464	510	422	465	386	424	353	389

Type of Rail ER-R-ECO (Refer to Note 7 for other compatible rails)

Type of Interface ER-I-05 (Tin Interface)

Solar Panel Dimension 2 m x 1 m (Refer to Note 13 for other panel sizes)

Terrain Category 2

				Building Height (m)							
\A(!)	H :	≤ 5	5 < H	<u>≤</u> 10	10 < 1	H <u><</u> 15	15 < F	- 1 ≤ 20	20 < H	H <u>≤</u> 30	
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	
Α	1561	1717	1469	1616	1423	1565	1386	1525	1359	1495	
В	1331	1464	1102	1212	1010	Ш	936	1030	872	959	
С	863	949	707	778	597	656	615	677	578	636	
D	532	586	459	505	413	454	376	414	349	384	

Type of Rail ER-R-ECO (Refer to Note 7 for other compatible rails)

Type of Interface ER-I-05 (Tin Interface)

Solar Panel Dimension 2 m x 1 m (Refer to Note 13 for other panel sizes)

Terrain Category 2.5

Roof Angle - $0^{\circ} < \alpha \le 10^{\circ}$

	Building Height (m)										
VA7: 1	H	≤ 5	5 < H	<u>≤</u> 10	10 < H	H <u><</u> 15	≤ 15		20 < F	20 < H ≤ 30	
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	
Α	1671	1838	1616	1777	1561	1717	1487	1636	1469	1616	
В	1460	1606	1359	1495	1221	1343	1111	1222	1010	Ш	
С	1001	1101	890	980	789	868	725	798	652	717	
D	624	687	569	626	505	555	459	505	422	465	

Roof Angle - $10^{\circ} < \alpha \le 20^{\circ}$

					Building H	eight (m)				
\A/: I	H	≤ 5	5 < H	<u>≤</u> 10	10 < H	H <u><</u> 15	15 < F	H <u><</u> 20	20 < F	H <u>≤</u> 30
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	1666	1833	1611	1772	1551	1707	1478	1626	1460	1606
В	1450	1595	1359	1495	1216	1338	1106	1217	1005	1106
С	996	1096	881	969	780	858	725	798	643	707
D	620	682	565	621	500	550	450	495	418	459

		Building Height (m)												
\A/: I	H	≤ 5	5 < H	<u>≤</u> 10	10 < H	H <u><</u> 15	15 < F	H <u><</u> 20	20 < F	H <u>≤</u> 30				
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central				
Α	1662	1828	1607	1767	1551	1707	1473	1621	1455	1601				
В	1450	1595	1354	1489	1212	1333	1102	1212	1001	1101				
С	987	1086	877	964	776	853	721	793	643	707				
D	620	682	565	621	496	545	454	500	413	454				

Type of Rail ER-R-ECO (Refer to Note 7 for other compatible rails)

Type of Interface ER-I-05 (Tin Interface)

Solar Panel Dimension 2 m x 1 m (Refer to Note 13 for other panel sizes)

Terrain Category 2.5

					Building Height (m)						
\A(!)	H :	≤ 5	5 < H	<u>≤</u> 10	10 < F	1 <u><</u> 15	15 < F	- 1 ≤ 20	20 < H	l <u>≤</u> 30	
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	
Α	1652	1818	1561	1717	1515	1666	1469	1616	1359	1495	
В	1395	1535	1304	1434	1193	1313	1092	1202	964	1060	
С	955	1050	863	949	771	848	716	788	643	707	
D	615	677	551	606	487	535	441	485	404	444	

Type of Rail ER-R-ECO (Refer to Note 7 for other compatible rails)

Type of Interface ER-I-05 (Tin Interface)

Solar Panel Dimension 2 m x I m (Refer to Note 13 for other panel sizes)

Terrain Category 3

Roof Angle - $0^{\circ} < \alpha \le 10^{\circ}$

					Building H	leight (m)				
\A/: I	H <u><</u> 5		5 < H ≤ 10		10 < H <u><</u> 15		15 < H <u><</u> 20		20 < H <u><</u> 30	
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	1744	1919	1735	1909	1671	1838	1597	1757	1450	1595
В	1528	1681	1524	1676	1423	1565	1285	1414	1148	1262
С	1102	1212	1092	1202	946	1040	845	929	753	828
D	689	757	679	747	606	666	532	586	468	515

Roof Angle - $10^{\circ} < \alpha \le 20^{\circ}$

					Building H	eight (m)				
\A/: I	H	<u><</u> 5	5 < H	H ≤ 10		15 < F	H <u><</u> 20	20 < H <u><</u> 30		
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	1735	1909	1726	1898	1666	1833	1588	1747	1446	1590
В	1524	1676	1519	1671	1418	1560	1276	1404	1138	1252
С	1102	1212	1088	1197	936	1030	840	924	748	823
D	684	752	670	737	601	661	523	576	464	510

					B uilding H	leight (m)				
\A/: I	H	≤ 5	5 < H	<u>≤</u> 10	10 < H	H <u><</u> 15	15 < F	H <u><</u> 20	20 < F	H <u>≤</u> 30
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	1680	1848	1662	1828	1597	1757	1524	1676	1377	1515
В	1515	1666	1423	1565	1368	1505	1248	1373	1102	1212
С	1203	1323	1065	1171	918	1010	826	909	725	798
D	776	853	652	717	588	646	514	565	450	495

Type of Rail ER-R-ECO (Refer to Note 7 for other compatible rails)

Type of Interface ER-I-05 (Tin Interface)

Solar Panel Dimension 2 m x I m (Refer to Note 13 for other panel sizes)

Terrain Category 3

	Building Height (m)									
	H <u><</u> 5		5 < H <u><</u> 10		10 < H <u><</u> 15		15 < H ≤ 20		20 < H <u><</u> 30	
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	1671	1838	1662	1828	1597	1757	1524	1676	1377	1515
В	1441	1585	1423	1565	1368	1505	1248	1373	1102	1212
С	1074	1181	1065	1171	918	1010	826	909	725	798
D	661	727	652	717	588	646	514	565	450	495

General Notes

Note I. Tile Roof Interface Spacing tables based on a minimum depth into F7 (Pine) timber of 25mm and Tin Roof Interface Spacing tables based on a minimum depth into F7 (Pine) timber of 35mm and Steel Purlins G450 1.5mm thick.

Note 2. Standard screws shipped for tin and tile Roof Interfaces

Metal Purlins/Battens	Fasteners to use
0.75 mm	Buildex- 14 - 11 x 70 Hex Head Zips Climaseal 3 with 16 mm ABW on G550 Steel Battens
1.5 mm - 2.4 mm	Buildex- 14 - 11 x 70 Hex Head Zips Climaseal 3 with 16 mm ABW
Wood Purlins and Rafters	Fasteners to be used
Timber F7 (Pine) and Timber 17 (Hardwood).	Tin Interface: Buildex- 14 - 11 x 70 Hex Head Zips Climaseal 3 with 16 mm ABW or 14g (6.3 mm)
	Tile Interface: Buildex- 14 - 11 x 70 Hex Head Zips Climaseal 3 with 16 mm ABW or 14-10 x 50 Hex Head T17 with 16mm ABW Climaseal 3 or 14-10 x 65 Hex Head T17 Climaseal 3 or other screw of pullout value not less than screws above.

Note 3. Tin and tile spacings were calculated based on Steel Purlins G450 1.5mm and Timber F7 (Pine). For 0.75 mm thick steel battens and 1.2mm thick purlins, all the fixing spacings shall be reduced as follows:

Wind Region A	Wind Region B	Wind Region C	Wind Region D
- 28 %	- 40 %	- 40 %	- 40 %

Note 4. For 1.9 mm and 2.4 mm thick purlins, all the fixing spacings shall be increased as follows:

Wind Region A	Wind Region B	Wind Region C	Wind Region D
_	_	+ 5 %	+ 10 %

Note 5. If reducing screw embedment by using EZ-AD-C43 adaptor or if attaching to a smaller timber batten/purlin, fixing spacing to be reduced/increased to timber purlins as per below:

	Batten-Purlin Depth / Screw embedme						
Batten type	25 mm 30 mm						
Timber F7	Reduction of 35%	Reduction of 25%					
Timber F17	Spacings remain the same	Increase of 20%					

Note 6. This engineering document was designed to cater for most common installation scenarios however, it does not cater for all of them. Contact Clenergy if you are unable to comply with any of the installation specifications listed on this document.

Note 7. The following components are satisfied for use according to AS/NZS 1664.1:1997-Amdt 1:1999 and AS/NZS 1170.2:2011 Amdt 4-2016

Components	Part No.	Description		
ECO-Rail	ER-R-ECO/XXXX	ECO Rail		
Splice	ER-SP-ECO	PV-ezRack Splice for ECO rail		
Australian Made Mill Finish ECO Rail	R-ECO/XXXX/AUMF	PV-ezRack Australian Made Mill Finish ECO Rail		
ST-Rail	ER-R-STXXXX	Standard Rail		
Splice	ER-SP-ST	PV-ezRack Splice for Standard Rail 200mm		
ECO Rail Black	ER-R-ECO/XXXX/BA	ECO Rail Black		
Black Splice ECO Rail	ER-SP-ECO/BA	Splice ECO Rail Black		
Inter Clamp	ER-IC-STXX	Inter Clamp = clamp + Z-Module + Bolt.		
End Clamp	ER-EC-STXX	End Clamp = clamp + Z-Module + bolt		
Clamp	C-U/30/46-G	Universal Clamp for Frame Height 30-46mm with Grounding Clip		
Clamp	C-U/30/46	Universal Clamp for Frame Height 30-46mm		
End Clamp	ER-EC-DU35/40	End Clamp dual 35 or 40mm		
End Clamp	ER-EC-DU40/46	End Clamp dual 40 or 46mm		
Inter Security Clamp	ER-IC-STXX/S	Inter Clamp = Clamp + Z-Module + Security Bolt		
End Security Clamp	ER-EC-STXX/S	End Clamp = Clamp + Z-Module + Security Bolt		

Components	Part No.	Description		
Interface	ER-I-01, 02, 04, 23, 26 and 51	Tile Interface		
Interface	ER-I-01/CS	Carbon Steel Tile Interface		
Tile Interface with ezClick connection for ECO-Rail	ER-I-01/EZC/ECO	PV-ezRack SolarRoof, Tile Interface with ezClick connection for ECO-Rail		
Interface	ER-I-05	Tin Interface		
Black Interface	ER-I-05/BA	Black Tin Interface		
Interface	ER-I-05/CM	Tin Interface with Click Module		
Interface	ER-I-05A/EZC/ECO	ezClick connection for ECO-Rail		
Interface	ER-I-25	Tin Interface with curved Base for corrugated Roof		
Black Interface	ER-I-25/BA	Black Tin Interface with curved Base for corrugated Roof		
End Clamp (*)	EC-FL/GE/XX/XX	End Clamp for Frameless Module (glued EPDM)		
Inter Clamp (*)	IC-FL/GE/XX/XX	Inter Clamp for Frameless Module (glued EPDM)		
End Clamp (*)	ER-EC-FL/XX/XX	End Clamp for Frameless Module		
Inter Clamp (*)	ER-IC-FL/XX/XX	Inter Clamp for Frameless Module		
Black End Clamp (*)	EC-FL/GE/XX/XX/B	Black End Clamp for Frameless Module (glued EPDM)		
Black Inter Clamp (*)	IC-FL/GE/XX/XX/B	Black Inter Clamp for Frameless Module (glued EPDM)		

Components	Part No.	Description
Adapter for Corrugated Roof	EZ-AD-C43	Adapted for Corrugated Iron Roof for Tin interface ER-I-05
Black Adapter for Corrugated Roof	EZ-AD-C43/BA	Black Adapted for Corrugated Iron Roof for Tin interface ER-I-05
Corrugated Adapter	EZ-AD-CII0	PV-ezRack Adapter for Corrugated Iron Roof.
Roof Extender (Reduction Factor)	ER-RE-200	Roof Hook Extender, Suitable for ER-I-01,02,04,05,23,26, 51 and 01/CS
Connector Clamp	CRC-R/ECO-ZBW	Cross Connector Clamp for ECO-Rail
Hanger Bolt	ER-HB-10/200A	PV-ezRack, Hanger Bolt M10*200mm
Hanger Bolt	ER-HB-MP/8/150EP	PV-ezRack Hanger Bolt for metal purlin M8*150mm
Hanger Bolt	ER-HB-8/150	Hanger bolt without mounting plate M8x150. Fixed to timber purlin only
Mid Clamp XX Black	ER-IC-STXXB	Inter Clamp XX Black
End Clamp XX Black	ER-EC-STXXB	End Clamp XX Black
Black Universal Clamp	C-U/30/46-BA	Black Universal Clamp
Black Universal Clamp	C-U/30/46-G-BA	Black Universal Clamp with grounding clip

^(*) Subject to the panel manufacturer's installation guide.

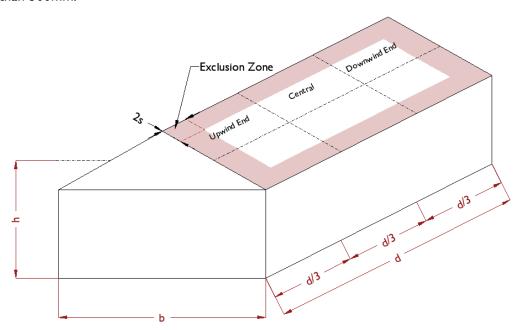
- **Note 8.** For Terrain Category (TC) definition, please refer to clause 4.2.1 of AS/NZS 1170.2:2011 (R2016).
- Note 9. The installed frame must comply with the clamping zone of the PV Panel.
- **Note 10.** Capacities checked and compared against testing data from Clenergy Australia and MTS (NATA certified).
- Note 11. Maximum permitted rail overhang of 40%.
- **Note 12.** For the definition of roof zones, refer to Appendix D6 of the AS/NZS 1170.2:2011 (R2016) standard.
- **Note 13.** This Engineering report is based on 2 m x 1 m panels and two rails per panel. However, a percentage increase could be applied on all interface spacings as shown on the following table.

Number of rails per panel	Panel length / width (mm)	Spacing +/-
2 rails	<u><</u> 1700/ <u><</u> 1100	+ 8 %
3 rails	<u>≤ 1700/ ≤1100</u>	+ 12 %
4 rails	<u><</u> 1700 / <u><</u> 1100	+ 15 %
2 rails	<u>≤</u> 2000/ <u>≤</u> 1100	0 %
3 rails	<u>≤</u> 2000/ <u>≤</u> 1100	+ 10 %
4 rails	<u>≤</u> 2000/ <u>≤</u> 1100	+ 12 %
2 rails	<u>≤</u> 2100/ <u>≤</u> 1100	- 10 %
3 rails	<u>≤</u> 2100/ <u>≤</u> 1100	+ 6 %
4 rails	<u>≤</u> 2100/ <u>≤</u> 1100	+ 10 %
2 rails	<u><</u> 2200/ <u><</u> 1100	- 13 %
2 rails	<u>≤ 2200/ ≤ l 200</u>	- 20 %

- **Note 14.** From the date of publication onwards, any amendment made to any of the above-mentioned Standards will make this report outdated and a new one will have to be released, unless the amendment has no implications on this certificate.
- **Note 15.** No consideration has been taken on the effect that the solar panel will have over the roof structure. It has been assumed that the roof will be able to resist the additional loadings imposed by the installation of the solar panels in conjunction with the Clenergy Mounting System.
- **Note 16.** All components from Clenergy must be installed according to manufacturer's specification and the instructions shown in the relevant installation manual. Please check the Clenergy Australia website or contact them for access to the most recent installation manuals.
- **Note 17.** No consideration has been taken on the effect of snow loads. In case the roof is located in a snow prone area, a special design must be made.

- **Note 18.** This document does not cover the building frame capacity. It has been assumed that the building frame will be able to resist the additional loadings imposed by the installation of the solar panels in conjunction with the Clenergy mounting system.
- **Note 19.** Neither Clenergy nor MW Engineering Melbourne are not to be responsible for external factors leading to compression of the tile interfaces.
- **Note 20.** Topographic Multiplier (Mt) taken as 1.0. Refer to clause 4.4 of AS/NZS 1170.2:2011 (R2016) for more information.
- **Note 21.** Shielding Multiplier (Ms) taken as 1.0. Refer to clause 4.3 of AS/NZS 1170.2:2011 (R2016) for more information.
- **Note 22.** Wind Direction Multiplier (Md) taken as 1.0. Refer to clause 3.3 of AS/NZS 1170.2:2011 (R2016) for more information.
- Note 23. General conditions
- Note 23.1 Minimum grade for steel purlins/battens of 450 Mpa.
- Note 23.2 Timber Grade members: F7 (Pine) and F17 (Hardwood).
- Note 23.3 If any of the screws of the interfaces go into pre-existing holes, they will have to be one size up compared to the screws that were previously installed. This is to ensure that the pullout capacity remains the same or higher.

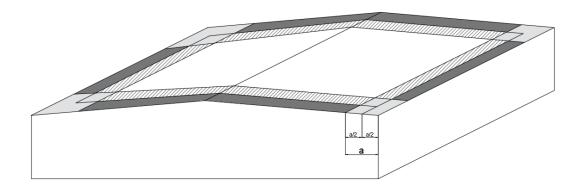
Note 24. Spacings on tile interfaces will be reduced as follows:


Interface	% of Reduction
ER-I-01/CS, ER-I-51 & ER-I-01/EZC/ECO	-
ER-I-02	-50%
ER-I-04	-50%
ER-I-23	-28%
ER-I-26	-28%

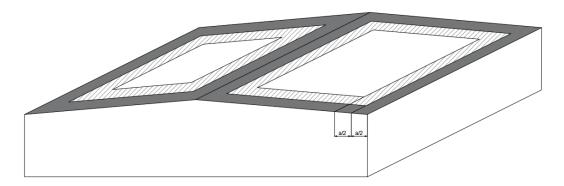
- Note 25. A minimum of two (2) screws per Tile Interface will be required for installation.
- Note 26. For installations on the Central Zone increase ER-I-01 & ER-I-05 Interface Spacings by 10%.
- Note 27. Use the same spacing listed on the tables of this certificate for panels installed in landscape.
- **Note 28.** When using Roof Extender (ER-RE-200), reduce interface spacings by 15% on Wind Region A and B and 30% on Wind Region C and D.

Note 29. Conditions for flush mounted systems installed on flat and pitched roofs according to the D6 Appendix of the AS/NZS 1170.2:2011 (R2016).

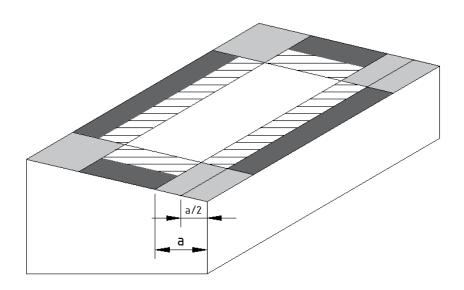
- Roof pitch to be between 1° and 30°.
- $h/d \le 0.5$ and $h/b \le 0.5$. Being h= height, b= width and d= length of the building as per the below picture.
- Gap between the underside of the panel and the roof to be no less than 50mm and no more than 300mm.


Note 30. Exclusion zone for flush installation to be the minimum distance from the edge of the roof "2s", where "s" is the gap between the underside of the panel and the roof.

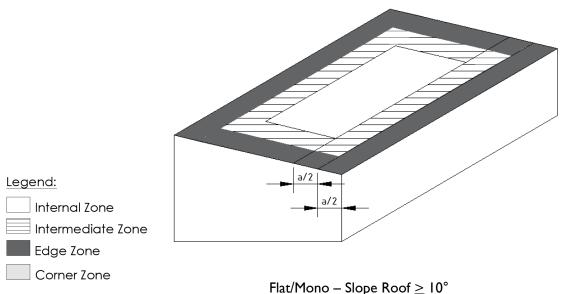
Note 31. If the installation is located in ISO corrosivity category C4 reduce the interface spacing by 5%. If the installation is located in ISO corrosivity category C5 reduce the interface spacing by 25%.


Note 32. Roof Zone definition when the installation doesn't meet the parameter on section D6 part (d) of the AS/NZS 1170.2:2011 (R2016) standard for roof angle is between 1° to 30°.

- **Step I.** Determine building height (h), width (b) and length (d).
- **Step 2.** Choose the lowest value between "h", "b \times 0.2" and "d \times 0.2".
- **Step 3.** The lowest value on Step 2, equates to a.



Roof Pitch < 10°



Roof Pitch $\geq 10^{\circ}$

Flat/Mono – Slope Roof $< 10^{\circ}$

Flat/190110 – Stope Root ≥ 1

Note 33. Zone reduction factors to be the following:

Internal: Use the same spacings as central zone.

Intermediate: Divide central zone spacings by 1.5.

Edge: Divide central zone spacings by 2. **Corner:** Divide central zone spacings by 3.

Note 34. For Hanger Bolt installation on either tin or tile roof, the spacing to apply with a minimum embedment depth of 25mm into F7 (Pine) timber or fixing to metal purlin with 1.5 mm thickness is the same as the tin roof interface spacing (ER-I-05). The Hanger Bolts for wood purlin/rafter installation are ER-HB-8/150 and ER-HB-10/200A. The Hanger Bolt for metal purlin/rafter is ER-HB-MP/8/150EP.

Note 35. Neither Clenergy nor MW Engineering Melbourne will be responsible for the integrity of the roof tiles when using hanger bolts for the solar installation. It will be the clients' responsibility to check the hanger bolt installation feasibility.

Example when building parameters fall outside section D6 of the AS/NZS 1170.2:2011 (R2016) standard.

Tin roof
Wind Region A
Terrain Category: 3
Building height: 5m
Roof pitch: less than 10°
Panel dimension: 2 m x 1 m

Installation on intermediate zone to be:

Central spacing: 1919 mmIntermediate zone: 1279 mm

Reduction for corrosion category C4 (-5% - Note 31)

Central spacing: 1820 mm
 Intermediate zone: 1215 mm

Adjustable Tile Brackets Certification Letter

CIVIL & STRUCTURAL ENGINEERS

RESIDENTIAL - INDUSTRIAL - COMMERCIAL - PRODUCT DEVELOPMENT

info@mwengineering.melbourne
Phone: 1300 MWENG-0 (1300 69364-0)
www.mwengineering.melbourne
ABN 37 605 815 585

09 October 2020

Clenergy Australia 1/10 Duerdin Street Clayton, VIC 3168

CERTIFICATION LETTER

Clenergy PV-ezRack Solar Roof Certification – TC2, 2.5, 3 – Wind Region A and B. Internal REF: **00428.** Project REF: **CL-563-S.**

MW Engineering Melbourne, being Structural Engineers within the meaning of Australian regulations, have calculated the maximum spacings for the PV ez-Rack rail system for the following conditions:

- Wind Loads to AS 1170.2-2011 AMDT 4-2016
 - Wind Terrain Category 2, 2.5 and 3
 - Wind average recurrence of 200 years
 - Wind Region A and B
- Solar panel length up to 2.2m
- Solar panel width up to 1.2m

Attached are the tables showing the spacings according to Wind Region, roof pitch, and building height.

The values shown on these tables will be valid unless an amendment is issued on any of the following codes:

AS/NZS 1170.0- 2002 AMDT 4-2016 General Principles
 AS/NZS 1170.1- 2002 AMDT 4-2016 Imposed Loadings
 AS/NZS 1170.2- 2011 AMDT 4-2016 Wind Loadings
 AS/NZS 1664.1- 1997 AMDT 1:1999 Aluminium Code

Should you have any queries, do not hesitate to contact us.

Best Regards,

RPEQ 18759

Alberto Escobar Civil/Structural Engineer BEng MIEAust NER BRP EC 46542

info@mwengineering.melbourne

STRUCTURAL DESIGN CERTIFICATION

PV-ezRack^R SolarRoof adjustable tile interface spacing tables according to AS/NZS 1170.2:2011 Amdt 4-2016 Within Australia Terrain Category 2, 2.5 & 3

Client: Clenergy Australia

REF: CL-563-S

Date: OCT 2020

Copyright: The concepts and information contained in this document are the property of MW Engineering Melbourne. Use or copying of this document in whole or in part without the written permission of MW Engineering Melbourne constitutes an infringement in copyright.

Limitation: This report has been prepared for the exclusive use of Clenergy Australia, and is subject to and issued in connection with the provisions of the agreement between MW Engineering Melbourne and Clenergy Australia. MW Engineering Melbourne accepts no liability or responsibility whatsoever for any use of or reliance upon this report by any third party other than Clenergy's clients.

Internal REF: 00428

Client: Clenergy Australia

Project: PV-ezRack SolarRoof adjustable tile interface spacing tables

Australian Standards

AS/NZS 1170.0:2002 (R2016) General Principles
AS/NZS 1170.1:2002 (R2016) Imposed loadings
AS/NZS 1170.2:2011 (R2016) Wind Loadings

AS/NZS 1664.1:1997-Amdt 1:1999 Aluminium

Wind Terrain Category: 2, 2.5 & 3

Wind average recurrence: 200 years

Designed: SM

Date: OCT -20

Disclaimer: From the date of publication onwards, any amendment made to any of the above-mentioned Standards will make this report outdated and a new one will have to be released, unless the amendment has no implications on this certificate.

Type of Rail ER-R-ECO (Refer to Note 4 for other compatible rails)

Type of Interface ER-I-41/EZC/ECO (Rail running perpendicular to rafter, L-bracket facing back) – Note 26

Solar Panel Dimension 1.7 m x 1 m (Refer to Note 17 for other panel sizes)

Terrain Category 3

Roof Angle - $0^{\circ} < \alpha \le 10^{\circ}$

	Building Height (m)									
	H	<u><</u> 5	5 < H	l <u><</u> 10	10 < H <u><</u> 15		15 < H ≤ 20		20 < H < 30	
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	1016	1466	985	1422	935	1348	924	1334	894	1290
В	693	1083	636	994	569	890	522	816	446	697

Roof Angle - $10^{\circ} < \alpha \le 20^{\circ}$

	Building Height (m)									
	H	<u><</u> 5	5 < H	l <u>≤</u> 10	10 < H	1 <u>≤</u> 15	15 < H ≤ 20		20 < H ≤ 30	
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	996	1436	966	1393	916	1322	906	1307	876	1264
В	679	1062	623	974	558	872	512	799	437	684

Roof Angle - $20^{\circ} < \alpha \le 30^{\circ}$

					Building H	leight (m)				
347	H	<u><</u> 5	5 < H ≤ 10		10 < H ≤ 15		15 < H ≤ 20		20 < H <u><</u> 30	
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	985	1422	956	1379	906	1308	897	1294	867	1251
В	672	1051	617	965	552	863	506	791	433	676

					Building F	leight (m)				
	Н :	<u><</u> 5	5 < H	l <u>≤</u> 10	10 < H	1 <u><</u> 15	15 < F	- 1 <u><</u> 20	20 < F	H <u>≤</u> 30
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	965	1392	936	1350	888	1281	878	1267	849	1225
В	658	1029	604	944	541	846	496	775	424	663

Type of Rail ER-R-ECO (Refer to Note 4 for other compatible rails)

Type of Interface ER-I-41/EZC/ECO (Rail running perpendicular to rafter, L-bracket facing back) – Note 26

Solar Panel Dimension I.7 m x I m (Refer to Note I7 for other panel sizes)

Terrain Category 2.5

Roof Angle - $0^{\circ} < \alpha \le 10^{\circ}$

					Building H	leight (m)				
NA (1)	Н :	<u><</u> 5	5 < H	l <u>≤</u> 10	10 < F	H <u>≤</u> 15	15 < F	H <u>≤</u> 20	20 < H <u><</u> 30	
Wind Region	U.W & D.W	Central	U.W & D.W	Central						
Α	874	1236	848	1199	804	1137	795	1125	769	1088
В	638	940	586	863	524	773	480	708	410	605

Roof Angle - $10^{\circ} < \alpha \le 20^{\circ}$

					Building F	leight (m)				
347	H	<u><</u> 5	5 < H	l <u>≤</u> 10	10 < F	1 <u>≤</u> 15	15 < F	- l ≤ 20	20 < F	- 1 ≤ 30
Wind Region	U.W & D.W	Central	U.W & D.W	Central						
Α	856	1211	830	1175	788	1115	780	1102	754	1066
В	625	921	574	845	514	757	471	694	403	593

Roof Angle - $20^{\circ} < \alpha \le 30^{\circ}$

					Building F	leight (m)				
347 : 1	H	<u><</u> 5	5 < H	l <u>≤</u> 10	10 < F	1 <u><</u> 15	15 < H ≤ 20 20 < H ≤			H <u>≤</u> 30
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	848	1199	822	1163	780	1103	771	1091	746	1055
В	619	911	568	837	508	749	466	687	398	587

					Building H	leight (m)				
147	Н :	<u><</u> 5	5 < H	l <u>≤</u> 10	10 < H	H <u>≤</u> 15	15 < F	H <u>≤</u> 20	20 < F	H <u>≤</u> 30
Wind Region	U.W & D.W	Central								
Α	830	1174	805	1139	764	1080	755	1068	731	1033
В	606	893	556	820	498	734	456	673	390	575

Type of Rail ER-R-ECO (Refer to Note 4 for other compatible rails)

Type of Interface ER-I-41/EZC/ECO (Rail running perpendicular to rafter, L-bracket facing back)- Note 26

Solar Panel Dimension I.7 m x I m (Refer to Note I7 for other panel sizes)

Terrain Category 2

Roof Angle - $0^{\circ} < \alpha \le 10^{\circ}$

					Building H	leight (m)				
347	H	<u><</u> 5	5 < H	l <u>≤</u> 10	10 < F	H <u>≤</u> 15	15 < F	- 1 <u><</u> 20	20 < F	H ≤ 30
Wind Region	U.W & D.W	Central	U.W & D.W	Central						
Α	744	1064	722	1032	685	979	677	969	655	937
В	456	777	419	713	375	638	344	585	294	500

Roof Angle - $10^{\circ} < \alpha \le 20^{\circ}$

					Building H	leight (m)				
3471	H	<u><</u> 5	5 < H	l <u>≤</u> 10	10 < H	1 <u>≤</u> 15	15 < F	- l ≤ 20	20 < F	H ≤ 30
Wind Region	U.W & D.W	Central	U.W & D.W	Central						
Α	730	1043	708	1011	671	959	664	949	642	918
В	447	761	410	699	368	626	337	573	288	490

Roof Angle - $20^{\circ} < \alpha \le 30^{\circ}$

						Building F	leight (m)				
200		Н :	<u><</u> 5	5 < H	l <u>≤</u> 10	10 < H ≤ 15 15 < H ≤ 20				20 < H <u><</u> 30	
Win Regio	-	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α		722	1032	700	1001	664	950	657	939	635	908
В		443	753	406	692	364	619	333	567	285	485

					Building H	leight (m)				
\A(!)	Н :	<u><</u> 5	5 < H	l <u>≤</u> 10	10 < F	H <u>≤</u> 15	15 < F	H <u>≤</u> 20	20 < F	H <u>≤</u> 30
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	707	1011	686	981	651	930	644	920	622	890
В	433	738	398	677	356	606	327	556	279	475

Type of Rail ER-R-ECO (Refer to Note 4 for other compatible rails)

Type of Interface ER-I-41/EZC/ECO (Rail running perpendicular to rafter, L-bracket facing

front) or (Rail parallel to rafter) - Note 26

Solar Panel Dimension 1.7 m x 1 m (Refer to Note 17 for other panel sizes)

Terrain Category 3

Roof Angle - $0^{\circ} < \alpha \le 10^{\circ}$

					Building H	leight (m)				
	H	<u><</u> 5	5 < H	l <u>≤</u> 10	10 < F	1 ≤ 15	15 < F	15 < H ≤ 20 20 < H ≤		
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	766	1118	743	1084	705	1028	697	1017	674	983
В	559	802	513	736	460	659	421	605	360	517

Roof Angle - $10^{\circ} < \alpha \le 20^{\circ}$

					Building F	leight (m)				
34 (1)	H	<u><</u> 5	5 < H	l <u>≤</u> 10	10 < H	H <u>≤</u> 15	15 < F	H <u>≤</u> 20	20 < F	H <u>≤</u> 30
Wind Region	U.W & D.W	Central								
Α	751	1095	728	1062	690	1008	683	997	661	964
В	548	787	503	722	450	646	413	592	353	506

Roof Angle - $20^{\circ} < \alpha \le 30^{\circ}$

					Building F	leight (m)				
\ \A(')	H	<u><</u> 5	5 < H	l <u>≤</u> 10	10 < H	H <u>≤</u> 15	15 < F	H <u>≤</u> 20	20 < F	H <u>≤</u> 30
Wind Region	U.W & D.W	Central								
Α	743	1084	721	1052	684	997	676	986	654	954
В	542	778	498	715	446	640	408	586	349	501

					Building H	leight (m)				
\A(:	H	$H \le 5$ $5 < H \le 10$ $10 < H \le 15$ $15 < H \le 20$ $20 < H$						1 ≤ 30		
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	728	1061	706	1030	669	977	662	966	640	934
В	531	762	488	700	437	626	400	574	342	491

Type of Rail ER-R-ECO (Refer to Note 4 for other compatible rails)

Type of Interface ER-I-41/EZC/ECO (Rail running perpendicular to rafter, L-bracket facing

front) or (Rail parallel to rafter) - Note 26

Solar Panel Dimension $I.7 \text{ m} \times I \text{ m}$ (Refer to Note 17 for other panel sizes)

Terrain Category 2.5

Roof Angle - $0^{\circ} < \alpha \le 10^{\circ}$

					Building H	leight (m)				
200	H	H ≤ 5		l <u>≤</u> 10	10 < H <u><</u> 15		15 < H ≤ 20		20 < H <u><</u> 30	
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	686	996	666	966	632	916	625	906	604	876
В	490	727	450	667	402	597	369	548	315	468

Roof Angle - $10^{\circ} < \alpha \le 20^{\circ}$

					Building H	leight (m)				
347	H	I ≤ 5 5 < H ≤ 10			10 < H	1 <u><</u> 15	15 < F	H <u>≤</u> 20	20 < H ≤ 30	
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	673	976	653	947	619	898	612	888	592	858
В	480	712	441	654	395	585	362	537	309	459

Roof Angle - $20^{\circ} < \alpha \le 30^{\circ}$

					Building F	leight (m)				
NA (* 1	H	H ≤ 5 5 < H ≤ 10		10 < H ≤ 15		15 < H <u><</u> 20		20 < H <u><</u> 30		
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	666	966	646	937	613	889	606	879	586	850
В	475	705	436	647	390	579	358	531	306	454

					Building H	leight (m)				
\A(:	H	<u><</u> 5	5 < H	l <u><</u> 10	10 < H ≤ 15					1 ≤ 30
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	652	946	633	918	600	870	594	861	574	832
В	465	690	427	634	382	567	350	520	300	444

Type of Rail ER-R-ECO (Refer to Note 4 for other compatible rails)

Type of Interface ER-I-41/EZC/ECO (Rail running perpendicular to rafter, L-bracket facing

front) or (Rail parallel to rafter) - Note 26

Solar Panel Dimension $I.7 \text{ m} \times I \text{ m}$ (Refer to Note 17 for other panel sizes)

Terrain Category 2

Roof Angle - $0^{\circ} < \alpha \le 10^{\circ}$

					Building F	leight (m)				
200	H	H ≤ 5 5 < H ≤ 10		10 < H ≤ 15		15 < H <u><</u> 20		20 < H <u><</u> 30		
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	580	827	563	802	534	761	528	752	511	728
В	434	645	399	592	357	530	328	486	280	415

Roof Angle - $10^{\circ} < \alpha \le 20^{\circ}$

					Building H	leight (m)				
\A/\;	H	<u><</u> 5	5 < H	l <u>≤</u> 10	10 < H <u><</u> 15		15 < F	- l <u><</u> 20	20 < H ≤ 30	
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	569	810	552	786	523	745	518	737	501	713
В	426	632	391	581	350	520	321	476	274	407

Roof Angle - $20^{\circ} < \alpha \le 30^{\circ}$

					Building F	leight (m)				
	H	<u><</u> 5	5 < H	5 < H < 10 10 < H < 15			15 < F	H <u>≤</u> 20	20 < H ≤ 30	
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	563	802	546	778	518	738	512	730	495	705
В	422	626	387	575	346	515	318	471	272	403

					Building H	leight (m)				
\A(:	H	<u><</u> 5	5 < H	5 < H ≤ 10 10 < H ≤ 15			15 < F	- l <u><</u> 20	20 < H ≤ 30	
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	551	785	535	762	507	723	502	715	485	691
В	413	613	379	563	339	504	311	462	266	395

Type of Rail ER-R-ECO (Refer to Note 4 for other compatible rails)

Type of Interface ER-I-61/EZC/ECO (Rail running perpendicular or parallel to rafter)

Solar Panel Dimension I.7 m x I m (Refer to Note I7 for other panel sizes)

Terrain Category 3

Roof Angle - $0^{\circ} < \alpha \le 10^{\circ}$

					Building H	leight (m)				
\A(:	H	≤ 5	5 < H	l <u>≤</u> 10	10 < F	l <u>≤</u> 15	15 < F	- l ≤ 20	20 < F	H ≤ 30
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	616	916	598	889	567	843	561	834	542	806
В	462	682	424	626	380	560	348	514	298	439

Roof Angle - $10^{\circ} < \alpha \le 20^{\circ}$

					Building H	leight (m)				
	Н :	≤ 5	5 < H	l <u>≤</u> 10	10 < H	1 <u>≤</u> 15	15 < F	- l ≤ 20	20 < F	H ≤ 30
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	604	898	586	871	555	826	549	817	531	790
В	453	669	415	614	372	549	341	503	291	430

Roof Angle - $20^{\circ} < \alpha \le 30^{\circ}$

347 : 1	H ≤ 5		5 < H <u><</u> 10		10 < H <u><</u> 15		15 < H <u><</u> 20		20 < H < 30	
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	598	889	580	862	550	818	544	809	526	782
В	448	661	411	607	368	544	337	498	288	426

	Building Height (m)										
247	H <u><</u> 5		5 < H <u><</u> 10		10 < H <u><</u> 15		15 < H <u><</u> 20		20 < H ≤ 30		
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	
Α	585	870	568	844	538	801	533	792	515	766	
В	439	648	403	595	361	532	331	488	283	417	

Type of Rail ER-R-ECO (Refer to Note 4 for other compatible rails)

Type of Interface ER-I-61/EZC/ECO (Rail running perpendicular or parallel to rafter)

Solar Panel Dimension I.7 m x I m (Refer to Note I7 for other panel sizes)

Terrain Category 2.5

Roof Angle - $0^{\circ} < \alpha \le 10^{\circ}$

		Building Height (m)												
200	H ≤ 5		5 < H ≤ 10		10 < H ≤ 15		15 < H ≤ 20		20 < H <u><</u> 30					
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central				
Α	562	824	545	799	517	758	511	750	494	725				
В	410	601	377	552	337	494	309	453	264	387				

Roof Angle - $10^{\circ} < \alpha \le 20^{\circ}$

		Building Height (m)												
347	H <u><</u> 5		5 < H ≤ 10		10 < H <u><</u> 15		15 < H <u><</u> 20		20 < H ≤ 30					
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central				
Α	550	807	534	783	507	743	501	735	485	710				
В	402	589	369	541	330	484	303	444	259	380				

Roof Angle - $20^{\circ} < \alpha \le 30^{\circ}$

	Building Height (m)										
347	H ≤ 5		5 < H ≤ 10		10 < H <u><</u> 15		15 < H <u><</u> 20		20 < H ≤ 30		
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	
Α	545	799	528	775	501	735	496	727	480	703	
В	398	583	365	536	327	480	300	440	256	376	

		Building Height (m)												
\A(!)	H <u><</u> 5		5 < H ≤ 10		10 < H <u><</u> 15		15 < H <u><</u> 20		20 < H <u><</u> 30					
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central				
Α	534	783	518	759	491	720	486	712	470	689				
В	390	571	357	525	320	469	293	431	251	368				

Type of Rail ER-R-ECO (Refer to Note 4 for other compatible rails)

Type of Interface ER-I-61/EZC/ECO (Rail running perpendicular or parallel to rafter)

Solar Panel Dimension I.7 m x I m (Refer to Note I7 for other panel sizes)

Terrain Category 2

Roof Angle - $0^{\circ} < \alpha \le 10^{\circ}$

	Building Height (m)										
347	H ≤ 5		5 < H ≤ 10		10 < H <u><</u> 15		15 < H ≤ 20		20 < H <u><</u> 30		
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	
Α	506	737	491	715	465	678	460	671	445	648	
В	369	538	339	494	304	442	278	405	238	346	

Roof Angle - $10^{\circ} < \alpha \le 20^{\circ}$

					Building F	leight (m)				
347	H <u><</u> 5		5 < H ≤ 10		10 < H <u><</u> 15		15 < H <u><</u> 20		20 < H <u><</u> 30	
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central
Α	496	722	481	700	456	664	451	657	437	635
В	362	527	332	484	298	433	273	397	233	339

Roof Angle - $20^{\circ} < \alpha \le 30^{\circ}$

	Building Height (m)										
347	H	<u><</u> 5	5 < H ≤ 10		10 < H <u><</u> 15		15 < H <u><</u> 20		20 < H < 30		
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	
Α	491	715	476	693	452	657	447	650	432	629	
В	358	522	329	479	294	429	270	393	231	336	

	Building Height (m)										
\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	H ≤ 5		5 < H ≤ 10		10 < H <u><</u> 15		15 < H <u><</u> 20		20 < H < 30		
Wind Region	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	U.W & D.W	Central	
Α	481	700	466	679	442	644	438	637	423	616	
В	351	511	322	469	288	420	265	385	226	329	

General Notes

Note 1. Tile Roof Interface Spacing tables based on a minimum depth into F7 (Pine) timber of 25mm.

Note 2. Standard screws shipped for tin and tile Roof Interfaces

Wood Purlins and Rafters	Fasteners to be used
Timber F7 (Pine) and Timber 17 (Hardwood).	Buildex- 14 - 11 x 70 Hex Head Zips Climaseal 3 with 16 mm ABW or 14-10 x 50 Hex Head T17 with 16mm ABW Climaseal 3 or 14-10 x 65 mm Hex Head T17 Climaseal 3 or other screw of pullout value not less
	than screws above.

Note 3. This engineering document was designed to cater for most common installation scenarios however, it does not cater for all of them. Contact Clenergy if you are unable to comply with any of the installation specifications listed on this document.

Note 4. The following components are satisfied for use according to AS/NZS 1664.1:1997-Amdt 1:1999 and AS/NZS 1170.2:2011 Amdt 4-2016

Components	Part No.	Description
ECO-Rail	ER-R-ECO/XXXX	ECO Rail
Splice	ER-SP-ECO	PV-ezRack Splice for ECO rail
Australian Made Mill Finish ECO Rail	R-ECO/XXXX/AUMF	PV-ezRack Australian Made Mill Finish ECO Rail
ST-Rail	ER-R-STXXXX	Standard Rail
Splice	ER-SP-ST	PV-ezRack Splice for Standard Rail 200mm
ECO Rail Black	ER-R-ECO/XXXX/BA	ECO Rail Black
Black Splice ECO Rail	ER-SP-ECO/BA	Splice ECO Rail Black
Inter Clamp	ER-IC-STXX	Inter Clamp = clamp + Z-Module + Bolt.

Components	Part No.	Description		
End Clamp	ER-EC-STXX	End Clamp = clamp + Z-Module + bolt		
Clamp	C-U/30/46-G	Universal Clamp for Frame Height 30-46mm with Grounding Clip		
Clamp	C-U/30/46	Universal Clamp for Frame Height 30-46mm		
End Clamp	ER-EC-DU35/40	End Clamp dual 35 or 40mm		
End Clamp	ER-EC-DU40/46	End Clamp dual 40 or 46mm		
Inter Security Clamp	ER-IC-STXX/S	Inter Clamp = Clamp + Z-Module + Security Bolt		
End Security Clamp	ER-EC-STXX/S	End Clamp = Clamp + Z-Module + Security Bolt		
Interface	ER-I-41/EZC/ECO	Adjustable Tile Interface (Aluminium)		
Interface	ER-I-61/EZC/ECO	Adjustable Tile Interface (Aluminium)		
End Clamp (*)	EC-FL/GE/XX/XX	End Clamp for Frameless Module (glued EPDM)		
Inter Clamp (*)	IC-FL/GE/XX/XX	Inter Clamp for Frameless Module (glued EPDM)		
End Clamp (*)	ER-EC-FL/XX/XX	End Clamp for Frameless Module		
Inter Clamp (*)	ER-IC-FL/XX/XX	Inter Clamp for Frameless Module		
Black End Clamp (*)	EC-FL/GE/XX/XX/B	Black End Clamp for Frameless Module (glued EPDM)		
Black Inter Clamp (*)	IC-FL/GE/XX/XX/B	Black Inter Clamp for Frameless Module (glued EPDM)		

Components	Part No.	Description	
Mid Clamp XX Black	ER-IC-STXXB	Inter Clamp XX Black	
End Clamp XX Black	ER-EC-STXXB	End Clamp XX Black	
Black Universal Clamp	C-U/30/46-BA	Black Universal Clamp	
Black Universal Clamp	C-U/30/46-G-BA	Black Universal Clamp with grounding clip	

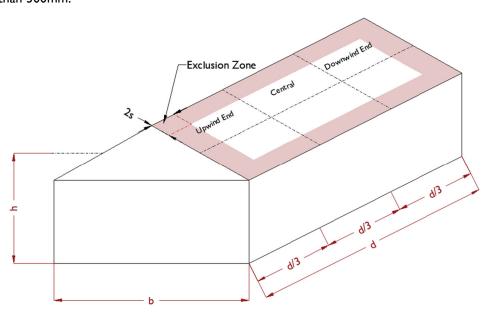
- (*) Subject to the panel manufacturer's installation guide.
- **Note 5.** For Terrain Category (TC) definition, please refer to clause 4.2.1 of AS/NZS 1170.2:2011 (R2016).
- **Note 6.** Topographic Multiplier (Mt) taken as 1.0. Refer to clause 4.4 of AS/NZS 1170.2:2011 (R2016) for more information.
- **Note 7.** Shielding Multiplier (Ms) taken as 1.0. Refer to clause 4.3 of AS/NZS 1170.2:2011 (R2016) for more information.
- **Note 8.** Wind Direction Multiplier (Md) taken as 1.0. Refer to clause 3.3 of AS/NZS 1170.2:2011 (R2016) for more information.
- Note 9. The installed frame must comply with the clamping zone of the PV Panel.
- **Note 10.** Capacities checked and compared against testing data from Clenergy Australia and MTS (NATA certified).
- **Note 11.** Maximum permitted rail overhang of 40%.
- **Note 12.** For the definition of roof zones, refer to Appendix D6 of the AS/NZS 1170.2:2011 (R2016) standard.
- **Note 13.** From the date of publication onwards, any amendment made to any of the above-mentioned Standards will make this report outdated and a new one will have to be released, unless the amendment has no implications on this certificate.
- **Note 14.** No consideration has been taken on the effect that the solar panel will have over the roof structure. It has been assumed that the roof will be able to resist the additional loadings imposed by the installation of the solar panels in conjunction with the Clenergy Mounting System.
- **Note 15.** All components from Clenergy must be installed according to manufacturer's specification and the instructions shown in the relevant installation manual. Please check the Clenergy Australia website or contact them for access to the most recent installation manuals.
- **Note 16.** No consideration has been taken on the effect of snow loads. In case the roof is located in a snow prone area, a special design must be made.

Note 17. This Engineering report is based on $2 \text{ m} \times 1 \text{ m}$ panels and two rails per panel. However, a percentage increase could be applied on all interface spacings as shown on the following table.

Number of rails per panel	Panel length / width (mm)	Spacing +/-	
2 rails	<u>≤ 1700/ ≤1100</u>	0%	
3 rails	<u><</u> 1700/ <u><</u> 1100	12%	
4 rails	<u><</u> 1700 / <u><</u> 1100	17%	
2 rails	<u><</u> 2000/ <u><</u> 1100	-10%	
3 rails	<u><</u> 2000/ <u><</u> 1100	10%	
4 rails	<u>≤</u> 2000/ <u>≤</u> 1100	15%	
2 rails	<u><</u> 2100/ <u><</u> 1100	-12%	
3 rails	<u>≤</u> 2100/ <u>≤</u> 1100	8%	
4 rails	<u><</u> 2100/ <u><</u> 1100	12%	
2 rails	<u>≤</u> 2200/ <u>≤</u> 1100	-15%	
2 rails	<u>≤ 2200/ ≤</u> 1200	-20%	

Note 18. This document does not cover the building frame capacity. It has been assumed that the building frame will be able to resist the additional loadings imposed by the installation of the solar panels in conjunction with the Clenergy mounting system.

Note 19. Neither Clenergy nor MW Engineering Melbourne are not to be responsible for external factors leading to compression of the tile interfaces.

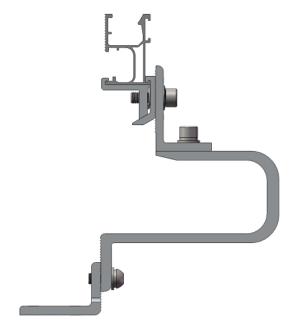

Note 20. General conditions

- Note 20.1 Timber Grade members: F7 (Pine) and F17 (Hardwood).
- **Note 20.2** If any of the screws of the interfaces go into pre-existing holes, they will have to be one size up compared to the screws that were previously installed. This is to ensure that the pullout capacity remains the same or higher.
- Note 21. A minimum of two (2) screws per Tile Interface will be required for installation.
- Note 22. Use the same spacing listed on the tables of this certificate for panels installed in landscape.
- **Note 23.** If the installation is located in ISO corrosivity category C4 reduce the interface spacing by 5%. If the installation is located in ISO corrosivity category C5 reduce the interface spacing by 25%.

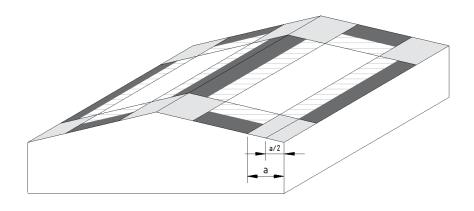
Note 24. Conditions for flush mounted systems installed on flat and pitched roofs according to the D6 Appendix of the AS/NZS 1170.2:2011 (R2016).

- Roof pitch to be between 1° and 30°.
- $h/d \le 0.5$ and $h/b \le 0.5$. Being h= height, b= width and d= length of the building as per the below picture.
- Gap between the underside of the panel and the roof to be no less than 50mm and no more than 300mm.

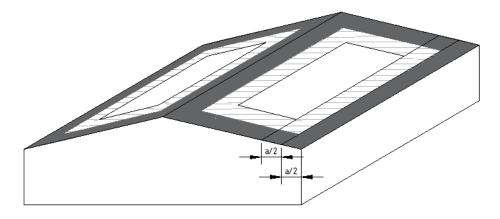
Note 25. Exclusion zone for flush installation to be the minimum distance from the edge of the roof "2s", where "s" is the gap between the underside of the panel and the roof.


Note 26. Bracket orientation as per below pictures

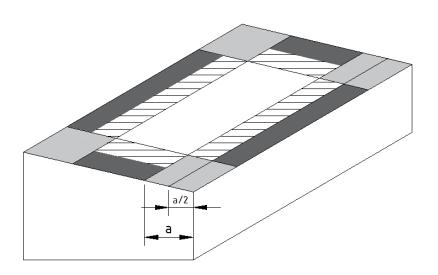
Adjustable bracket (L-bracket facing back)



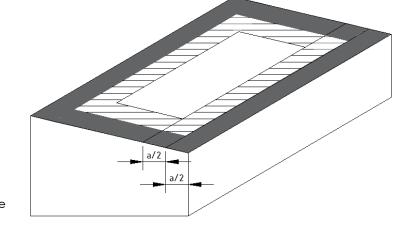
Adjustable bracket (L-bracket facing front)


Note 27. Roof Zone definition when the installation doesn't meet the parameter on section D6 part (d) of the AS/NZS 1170.2:2011 (R2016) standard for roof angle is between 1° to 30°.

- **Step I.** Determine building height (h), width (b) and length (d).
- **Step 2.** Choose the lowest value between "h", "b \times 0.2" and "d \times 0.2".
- **Step 3.** The lowest value on Step 2, equates to a.



Roof Pitch < 10°



Roof Pitch $\geq 10^{\circ}$

Flat/Mono – Slope Roof < 10°

Flat/Mono – Slope Roof <u>></u> 10°

Legend:
Internal Zone
Intermediate Zone
Edge Zone
Corner Zone

Note 28. Zone reduction factors to be the following:

Internal: Use the same spacings as central zone.

Intermediate: Divide central zone spacings by 1.5.

Edge: Divide central zone spacings by 2. **Corner:** Divide central zone spacings by 3.

Example when building parameters fall outside section D6 of the AS/NZS 1170.2:2011 (R2016) standard.

Wind Region A
Terrain Category: 3
Building height: 5m
Roof pitch: less than 10°

ER-I-41/EZC/ECO (Rail running perpendicular to rafter, L-bracket facing back)

Panel dimension: 2 m x 1 m Fixing spacings to be:

Internal zone: 1319 mmIntermediate zone: 880 mmEdge zone: 660 mm

- Corner zone: 439 mm

PV-ezRACK® 10 Year Product Warranty

As the manufacturer of quality solar mounting systems, Clenergy Australia provides a warranty for all PV-ezRack products it supplies in Australia and New Zealand ("Products"). The warranty provided by Clenergy Australia is subject to the conditions contained in this document ("Warranty"). No other warranty provision implied or otherwise is to be assumed. Your Warranty coverage is in accordance with this document.

Product Warranty Table for Installations in Corrosivity Category 1, 2, 3, 4 and 5 (ISO 9223)

# Product		Material	Standard or Customized Product	Product Warranty		
				Corrosivity Category 1, 2 and 3	Corrosivity Category 4	Corrosivity Category 5
		6005CL-T5 mill finish	Standard	10 years	10 years*	10 years*
4	1 Aluminium Components	6005-T5 anodized to 10 microns	Standard	10 years	10 years*	10 years*
		6005-T5 anodized to 15 microns	Customized	10 years	10 years	10 years*
		6005-T5 anodized to 20 microns	Customized	10 years	10 years	10 years
2	Galvanized Steel Components	Galvanized Steel at 85 microns in average	Standard	10 years	10 years	Not warranted
3	Stainless Steel Components	SUS304	Standard	10 years	10 years	10 years
4	Fasteners (bolts/	SUS304	Standard	10 years	10 years	10 years
4 nuts/wash	nuts/washers)	SUS316	Customized	10 years	10 years	10 years
5	Buildex Screws for Tile Interface	Carbon Steel SAE 1022 with Climaseal 3 Finish	Standard	10 years	10 years**	10 years**
6	Buildex Screws for Tin Interface	Carbon Steel SAE 1022 with Climaseal 3 Finish	Standard	10 years	Not warranted	

^{*} Subject to interface spacing reduction as advised by Clenergy Australia. Please contact us for more details.

Warranty Scope

Your solar mounting Product has been manufactured to high standards, however, should any manufacturing defect arise, please contact Clenergy Australia. We will arrange for an inspection of the affected Product(s) to determine the extent of the problem.

Details are provided below as to the extent of your Warranty coverage and any exclusions that may apply. Please read these provisions carefully to ensure you receive the appropriate assistance and support in a timely manner. Please also contact Clenergy Australia if any part of this Warranty is unclear, or you wish to discuss your rights and remedies under this Warranty.

If your Product fails during the Warranty periods set out in the Warranty table above due to a defect in:

(a) materials and/or workmanship on and from the date of the Product's delivery; or

(b) structural integrity on and from the date of the Product's installation,

Clenergy Australia will at its election either repair or resupply the defective Product provided that:

- The Product was installed correctly by a Clean Energy Council ("CEC") accredited or equivalent accreditation installer, following the Clenergy installation manual provided at time of purchase.
- The Product has been maintained correctly in accordance with section "Care of your Product" below.

Warranty Conditions:

- Any and all costs for repair or replacement outside the Warranty period are the responsibility of the customer.
- Where Clenergy attends a site and finds that the Product is not faulty, the costs for the visit will be payable by the customer.
- Defective Products shall be uninstalled and/or reinstalled at the customer's expense and risk.
- Under certain conditions, the Warranty can be extended to more than 10 years at an extra cost, available upon request.

Warranty Exclusions:

- Product finish (natural surface oxidation) or any natural impairment or surface corrosion that does not compromise the structural integrity.
- Products sold or installed outside of Australia and New Zealand unless approved previously in writing by Clenergy Australia.
- Damage caused by transport, mishandling, incorrect storage, improper loading or willful conduct.
- Any Product not correctly installed in accordance with our installation manual, or any specific design instruction or special conditions as advised by Clenergy Australia.
- Damage caused by the Product being modified in any way unless previously agreed to in writing by Clenergy Australia.
- The use of the Product for purposes other than the mounting of PV solar panels.
- Installations where the environment is excluded in the "Products Warranty Table" above, and for galvanized steel ground system Products, where the pH level is outside the range of 6-8, unless agreed to in writing by Clenergy Australia prior to installation.

^{**}The screws under tile interface are assumed to be installed a category 1, 2 or 3 micro-climate within the roof structure.

PV-ezRACK® 10 Year Product Warranty

- Damage caused by extreme weather conditions or any other natural or man-made event outside of our control.
- Damage caused by attachments not designed or approved for connection to the Product.
- Damage caused by lightning strikes or excessive currents through the earthing/grounding clamps, clips or lugs.

Our Products may come with guarantees that cannot be excluded under the Australian Consumer Law. You may be entitled under statute to a replacement or refund for a major defect in the Products. You may also be entitled under statute to have the products repaired for any defect which does not amount to a major defect. The benefits given by this Warranty are in addition to any statutory rights and remedies you may have under Australian law.

Product Care:

Clenergy Products are designed to be durable with minimal care, however it is important that you maintain your mounting Product in accordance with proper practices. This includes regular maintenance and inspection to avoid damage.

The aluminum components are made from either AL 6005CL-T5 or AL6005-T5 and may also have a clear anodization. The aluminum may undergo some surface oxidization in service. Please note that this is normal and part of the natural ageing process. The result may even be beneficial to the longevity of the Product, as the oxidization can provide additional protection against degradation by pollution and atmospheric corrosion.

- The torque values of fastener connections on mounting system must be checked annually and corrected if needed in accordance with Clenergy Australia's installation manual.
- Regular cleaning to remove any soil or other possible contaminants must also be performed. Cleaning should be performed in accordance with guidelines recommended by the Galvanizers Association of Australia (GAA) (for Products supplied in Australia) or the Galvanizers Association of New Zealand (GANZ) (for Products supplied in New Zealand) or any other similar organisations (as applicable). When using tin interfaces for installation works, screws not exposed to frequent rain should be washed down with fresh water at least every 6 months.
- You should not use harsh chemicals or highly abrasive materials that may damage Product surfaces. Use only cleaners that are designed for aluminium and always wash them off with clean water afterwards. Steel components should be inspected before and after installation and any damage to the galvanizing should be treated immediately to prevent rusting. It is normal for galvanized Products to develop a surface barrier (the 'patina'), which helps to protect the surface from contaminants in the atmosphere and does not adversely affect the Product.
- You should also ensure that if the Product is stored prior to installing that it is not contaminated by contact with rusty items or other impurities such as
 dirt and chemicals. Should this occur, you must clean the Product and make any repairs using approved methods such as galvanized paint and antirust
 treatments immediately before installation.

Clenergy Australia

1/10 Duerdin Street, Clayton VIC 3168 Australia Tel: +61 3 9239 8088 Fax: +61 3 9239 8024 E-mail: sales@clenergy.com.au

www.clenergy.com.au

Clenergy China

999-1009 Min'an Rd, Huoju Hi-tech Ind. Dev. Zone Xiang'an District 361101, Xiamen, Fujian, China Tel: +86 592 311 0088 Fax: +86 592 599 5028 E-mail: sales@clenergy.com.cn www.clenergy.com.cn

Clenergy EMEA

Esplanade 41, 20354 Hamburg, Germany Tel: +49 (0) 40 3562 389 00 E-mail: sales.emea@clenergy.com

Clenergy Japan

Nittochi Yamashita Building 5th Floor 23 Yamashita-cho, Yokohama, 231-0023 Japan Tel: +81 45 228 8226 Fax: +81 45 228 8316 E-mail: sales@clenergy.co.jp

www.clenergy.jp

Clenergy Philippines

145 Yakal St., San Antonio village, Makati City, Philippines Tel: +63 977 8407240 E-mail: sales_ph@clenergy.com www.clenergy.ph

Clenergy Thailand

9/2, 5th Floor, Vorasin Building, Soi Yasoob 2, Viphavadee-Rungsit Road, Chomphon Sub-district, Chatuchak District, Bangkok 10900 Tel: +66 (0) 2 277 5201, +66 (0) 6 3228-0200 E-mail: sales_th@clenergy.com, support_th@clenergy.com www.clenergythailand.com

Clenergy Singapore

24 Raffles Place #28-01 Clifford Centre Singapore 048621 Tel: +65 9743 1425 E-mail: vincent.chan@clenergy.com

Clenergy Malaysia

Tel: +86 18750231005 E-mail: sales_em@clenergy.com

Clenergy Vietnam

Tel: +86 592 3110095 E-mail: sales_vietnam@clenergy.com; susie.chen@clenergy.com

Worldwide Network

